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Abstract

The continuity and momentum equations for electrons and multiple ion

species are solved analytically and numerically using a new model for

ambipolar diffusion. The general form of the model is valid for any quasi-

neutral plasma for which the diffusion approximation is appropriate,

including positive or negative ions, arbitrary geometries, and time

dependence. The model provides criteria for determining when single ion

diffusion theory is appropriate for describing multi-ion discharges, when a

multi-ion proportional model is appropriate, and when a multi-ion

nonproportional model must be used. The constant of proportionality for

proportional discharges is shown to be the ratio of the source term for each

species to the sum of the source terms for all species, with the source term

normalized by the respective free diffusion coefficient.

Proportional analytic solutions are determined for uniform external

ionization in planar and cylindrical geometries, double-exponential

external ionization in planar geometries, ionization by the bulk electrons in

planar and cylindrical geometries, and bulk ionization and nonresonant

charge transfer in planar geometries. Numerical comparisons to previous

experimental and theoretical determinations of electron temperature verify

earlier simpler models. Previous results from a model by Wunderer are

duplicated for a nonproportional case (Wunderer, 1978). Comparison to

experimental results of Schmidt provide explanations for features of his

results (Schmidt, 1965). Numerical solutions for generic two-ion plasmas

with recombination or charge transfer as volume losses and external or

xiv
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electron impact ionization sources provide scaling relationships for the

effects of multiple ions on discharge parameters.
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MULTI-ION AMBIPOLAR DIFFUSION

I. Introduction and Background

Introduction

Rationale for Investigation. One of the more difficult and interesting

problems in plasma physics is incorporating the electric field into the

description of the plasma in a self-consistent manner. This problem is

especially difficult if the field involved is generated by the separation of

charges within the plasma itself. Its intractability, as we will see in

Chapter II, is related to the sensitivity of the electric field to very small

changes in charge densities, and the fact that the problem must be solved

self-consistently. The first successful attempt to address such problems

was Schottky's ambipolar diffusion model, which took advantage of the

nearly neutral conditions present in many plasmas to describe the electric

field (Schottky, 1924).

We will fully describe the rationale and derivation of Schottky's model in

the next chapter. In brief, he addressed a single-ion plasma by assuming

the charge densities and fluxes of the two species to be equal. This allowed

him to develop a closed-form expression for the electric field without the

necessity of solving Poisson's equation. This expression, in turn, allowed

him to express the momentum (or diffusion) equation as a form of Fick's

law.
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Since then, many authors have extended Schottky's model to include

multiple positive ions, negative ions, and additional ionization mecha-

nisms. However, previous attempts to apply Schottky's ambipolar model to

multiple ions have led to extremely complicated systems that required

additional assumptions or were impossible to solve analytically, and often

difficult to solve numerically. (Phelps and Brown, 1952; Oskam, 1958;

Thompson, 1959; Golubovskii and Lyagushchenko, 1977; Wunderer, 1978;

Ferreira, Gousset, and Touzeau, 1988). Only in the simplest cases, corre-

sponding to what we will later describe as simple volume ionization, or

analytically simple external sources such as uniform ionization, was

solution possible. Even then the theoretical basis of the solutions was of

limited applicability. Typical of the solutions is Brown, who stated solutions

for very simple cases without any limitations on the validity of those

solutions at all (Brown, 1966: 67-68).

In this document, we will develop a new model of multi-ion ambipolar

diffusion in weakly ionized plasmas. The new model, while similar in

many respects to Schottky's model of single-ion ambipolar diffusion, uses a

slightly different and less restrictive set of physical assumptions that

enables simple descriptions of multi-ion ambipolar diffusion. For single-

ion plasmas, it reverts to Schottky-based models. For multi-ion plasmas, it

allows analytic solutions for physically realistic systems without restrictive

assumptions, and easy formulation and development of numerical solu-

tions.

Summary of the Investigation. In the remainder of this chapter we will

briefly discuss the momentum and continuity equations, including the
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simplifications applicable to the regime of our interest. This will provide a

starting point for the remainder of the work, and allow us to point out the

assumptions inherent in any diffusion model.

In Chapter II we discuss previous ambipolar diffusion models, their

limitations, and proposed resolution of some of those limitations. We start

with a detailed exposition of Schottky's model, so that we can see clearly the

justification for and foundations of the model. This is useful both to

understand the extensions of other authors, and to understand the differ-

ences between those models and the new model being developed here. Next,

we examine a number of works that addressed various aspects of the

system we are investigating. Finally, we discuss some of the shortcomings

of previous multi-ion models, and what this investigation will do to address

those shortcomings.

In Chapter III we formulate the new model. We start by explaining the

difference in assumptions between the present model and Schottky-based

models, and show how the assumptions lead to the new model for ambip-

olar diffusion. We then develop a simplified form useful for systems

containing only positive ions. Finally, we develop a normalized form of the

system for use in developing and investigating analytic solutions.

In Chapter IV we use the model to examine the phenomenon of propor-

tionality: the existence of multi-ion systems where the species number

densities have the same spatial dependence. In such systems, each ion

density can be written as a constant times the electron density, and so can

be said to be proportional to the electron density; hence, the name. We are

primarily concerned with systems consisting of positive ions only. We are
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able to derive a necessary and sufficient condition for proportionality to

occur, and a more general necessary condition. We discuss the implica-

tions of the necessary condition for a number of source terms, predicting

the results for the analytic solutions obtained later.

In Chapter V we develop analytic solutions for a number of cases. In

particular, we examine cylindrical and planar geometries, with source

terms representing uniform ionization, non-resonant charge transfer,

ionization by the electrons in the plasma, and ionization produced by

particles incident from both sides of a planar discharge. We include the

multi-ion equivalent of the system described by Schottky in the original

expositions of his model. We discuss the implications the solutions have for

overall scaling of the particle densities, fluxes, and electric field for the

various cases.

In Chapter VI we use numerical solutions to investigate systems not

amenable to analytic solution. We look at two classes of systems. One class

is comprised of fairly realistic systems. In these cases, the purpose of the

examinations is to compare the model to experiment or other authors'

calculations. The other class is comprised of quasi-realistic systems,

sometimes not fully attainable in reality. However, these systems allow us

to isolate and examine particular aspects of such processes as recombina-

tion and charge transfer.

In Chapter VII we present the results of the investigation, including a

summary of the significant results of the individual chapters, how the

investigation addressed the problems discussed in Chapter II, and sugges-

tions for continued research.
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In the Appendices we discuss several areas that are important, but need

not be in the main body of the work. In particular, we include the deriva-

tion of the dimensionless form of the differential equation system, the

details of an important but tedious integration, description of the basic

numerical algorithms used, and complete documentation and listings of

the programs used.

Momentum and Continuity Equations

We will be examining a fluid model of a plasma using the first two

moment equations. The first moment equation is the continuity equation:

aN -"
-+ V • F = S(ft)at

where N is the particle density as a function of position and time, r is the

particle flux defined by r = Nii , S is the net production rate of the particles,

and J is the average velocity of the particles as a function of position and

time.

The second moment is the momentum equation:

In( + (i. V)ii)= NE -Vp+ N (1-2)

This form of the momentum equation is appropriate for collisional

systems where viscosity forces are negligible, and where there is no

magnetic field. Here, Su/8t refers to the change in the average velocity due

to collisions.
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Let us now examine the changes in Equation 1-2 that produce the form

of the momentum equation appropriate for these investigations.

The )/uat term in the momentum equation can be neglected if the

characteristic time of variation of plasma parameters (such as particle

density, fluxes, electron temperature) greatly exceeds the time between

collisions (Golant, Zhilinsky, Sakharov, and Brown, 1980:193). At best, the

characteristic time of variation can be no shorter than the time it takes to

propagate a disturbance across the plasma. Therefore, we can approxi-

mate i)uf-ht by noting that it is comparable to u/l, where r is the time for

propagation of disturbances across the plasma. In a diffusive plasma, this

time is A2/D , where A is the characteristic scale length of the plasma and D

is the diffusion coefficient. On the other hand, 8u/St may be approximated

by uv, , where v, is the total collision frequency. Therefore, we may neglect

the au•/ait term if the plasma response frequency vp = D/A2 (not to be con-

fused with the plasma frequency (op ) is significantly smaller than the total

collision frequency. This condition is true for the plasmas of interest in this

paper. We can also define a generalized ionization frequency as the ratio of

species net source to the number density for that species: vi = SfNi . If the

total number density in the plasma is slowly varying, then the net gain in

particles described by vi must. be comparable to the flux loss to the walls,

characterized by D/A 2 . Under those circumstances clu/at may be neglected

if vi is small compared to v, .
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Even though the explicit time dependence in the momentum equation

can be neglected for a particular system, it still may be necessary to retain

the MN/'t term in the continuity equation. The reason is that the collision

term in the continuity equation involves the net source frequency vi (as

defined immediately above), not the total momentum transfer collision

frequency v,. As a result, time-dependent plasmas can often be described

with explicit time dependence appearing only in the continuity equation.

The second term within the parentheses on the left hand side of Equa-

tion 1-2 is denoted as the inertia term. For collisional plasmas it is general-

ly smaller than the pressure gradient term. In situations where collisions

can be neglected in describing the motion of the ions (commonly called

collisionless, or free fall), the inertia term dominates the pressure term.

The relationship required to justify neglect of the inertia term is

mN(-uV)i < Vp = kTVN (1-3)

The magnitude of (u. V)u may be approximated as u /A, while the magni-

tude of VN may be approximated as N/A . Using those relationships pro-

duces

u 2 < kI (1-4)

This implies tiat the inertia term may be neglected if u is small compared

the thermal velocity vth , where vth is defined by myth 2/2 = kT.

To evaluate Equation 1-4, we approximate u as A/k , with z defined as

D/A2 , just as before. With these approximations, Equation 1-4 becomes
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((1A

Using the definition of D as kT/mve produces

kT < m(vcA) (1-6)

If we then utilize the definition of vth , we find

vt < Y-2v, A (1-7)

Finally, expressing Vth in terms of the definition of mean free path and

collision frequency as Vth = v,,fp produces

fp < A F(1-8)

In other words, the inertia term may be neglected if the mean free path for

collisions is small compared to the characteristic scale length of the

plasma.

We neglect the inertia term in describing diffusional plasmas in the

model we are developing. Note, however, that several of the papers we

discuss in the next chapter retain it, at least for some of the species. It

must be retained for ions in the regime approaching free fall.

The last term on the right-hand side of the equation is the change in

momentum of the particles due to collisions with other species. One effect

present in this term is the change in momentum associated with the

creation or loss of particles, such as might occur in ionization. Such a

creation or loss represents not only a change in total number of particles as

described in the continuity equation, but also a change in momentum for

the species due to the momentum possessed by the particle that is produced

or lost. It is difficult to make general statements about when this effect may
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be neglected, since the particle produced (or lost) may represent either a

loss or gain of momentum for the species. For instance, electron impact

ionization produces two electrons, one generally of considerably lower

energy than the other. Furthermore, the total energy of the two is less than

the initial energy of the incident electron, since energy was needed for the

ionization itself. This can represent a net loss of momentum to the elec-

trons. However, every collision of an electron with a background particle

represents a change in the net momentum of the electrons. In general, it is

safe to say that if the collision frequency associated with a particular

reaction is negligible compared to a suitably defined total collision frequen-

cy, it is possible to neglect the momentum change associated with particle

creation or loss. Such a situation usually exists for weakly ionized colli-

sional plasmas. The other effect present in this term is the change in

momentum that particles undergo when colliding with the background

gas. This change in momentum is generally not negligible. Therefore, we

retain only that term. In that case, the collision term can be written in

terms of a suitably defined collision frequency as -vmNU .

We express the pressure in terms of temperature:

p = NkT (1-9)

This gives a V(NkT) factor in the second term of the right hand side of

Equation 1-2. If thermal gradients are small, we can remove the tempera-

ture from within the gradient operator. Otherwise, a temperature diffusion

term must be included. If we then define the diffusion coefficient:

D = IS- (1-10)
mv
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and mobility:

9M IqI (1-11)
my

We obtain the momentum equation in the form we will use in our analysis:

r =±LNE• - DVN (1-12)

where the ± takes into account the sign of the charge.

Other authors, depending on the conditions they are describing, may

retain terms we have neglected. However, this form is the appropriate

expression for a collision-dominated weakly ionized plasma.

Before we leave the question of simplifications to the momentum

equation, we should note that there are effects present in the discharge that

are produced by interactions between the charged particles and the neutral

background gas. We will consider briefly two of these; cataphoresis and

electrophoresis. Cataphoresis is the process whereby transport of ions

causes gradients in the background number density. The process of

creation of ions, their transport to a different location in the discharge, and

their recombination (either in the gas or at the wall) represents a net

transport of neutral particles, as well. in general, cataphoresis may be

neglected if the ion density is much less than the particle density. For the

weakly ionized plasmas being investigated here, that condition is true.

Electrophoresis is the process whereby the differing momenta of the ions

and electrons as they arrive at the walls of the discharge results in a net

momentum transfer to the walls of the discharge. The result, of course, is

a net momentum transfer to the discharge, as well. The details are related
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to the momentum gained or lost by the creation or loss of charged species.

Therefore, electrophoresis may be ignored in discharges where the collision

term in the momentum equation need only include simple momentum

transfer collisions, and not particle production or losses. Such is the case

for the discharges we are investigating.

In summary, the assumptions and restrictions inherent in the form of

the momentum equation we use in this analysis are that there are no

temperature gradients present, that the collision frequency is independent

of position, that the inertia term can be neglected, and that the explicit time

derivative of the particle velocity is small compared to the collision term.

Finally, if there is no electric field, the momentum equation reduces to a

form called Fick's law:

r= -DVN (1-13)

As we shall discuss in the next chapter, Fick's law is much easier to deal

with than the form that includes the electric field.
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II. Historical Perspective of the Theory of Multi-Ion Discharges

Introduction

In this chapter we will discuss some of the previous works that ad-

dressed the collisional positive column. Our intent is to examine the

difficulties in describing diffusion in the presence of electric fields, see how

various authors addressed those difficulties, and point out areas where

improvement is needed.

We first briefly describe the historical background of the theory of single-

ion ambipolar diffusion. We discuss Schottky's original theory, which

assumed quasi-neutrality in the body of the plasma, but ignored the sheath

(Schottky, 1924). We include solutions for cylindrical and planar geome-

tries. Next, we discuss Ecker's paper, which extended Schottky's theory to

non-neutral plasmas, but retained congruence (Ecker, 1954). We also

consider the paper of Tonks and Langmuir, who used an approach more

general than Schottky's to describe quasi-neutral plasmas in the expanded

regime of ambipolar diffusion to free fall (Tonks and Langmuir, 1929).

Finally, we discuss Allis and Rose, who described diffusional plasmas over

the entire regime from the free diffusion of plasmas whose number

densities were too low to enforce quasi-neutrality to ambipolar diffusion

(Allis and Rose, 1954).

Earlier works on multi-ion ambipolar diffusion, including Oskam's

paper (Oskam, 1959) are then considered. We use the difficulties in

justifying the assumptions required to produce solutions to Oskam's model
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as an example of general difficulties that occur in Schottky-based models.

We also discuss other multi-ion plasma models, with an emphasis on the

limitations and applicability of the models, and the differences between

those models and the present one.

We finish by discussing problem areas that still need to be addressed,

and how they will be addressed in the remaining chapters of this docu-

ment.

Single-ion Models

First, we will discuss single-ion diffusion, starting with Schottky's

theory of single-ion ambipolar diffusion. In particular, we will examine the

difficulties inherent in modeling the diffusion of charged particles with the

self-consistent field explicitly included. These difficulties will demonstrate

why Schottky was interested in taking advantage of the physical character-

istics of diffusional, quasi-neutral plasmas to develop a model that did not

include an explicit field dependence. We will describe Schottky's deriva-

tion, the assumptions used, the resulting model, and typical solutions.

We will then continue with three other single ion models, those of Tonks

and Langmuir (Tonks and Langmuir, 1929), Ecker (1954), and Allis and

Rose (Allis and Rose, 1954). Tonks and Langmuir developed a more

general model of plasmas that recovers Schottky's model in the collisional

quasi-neutral case, but which also includes the free fall case. Their model

addresses non-neutral plasmas in the sheath region, providing values for

the sheath thickness. Allis and Rose extended Schottky's model to include
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the transition to free diffusion, where the Debye length is no longer much

smaller than A.

Schottky's Model of Ambipolar Diffusion.

Rationale for Ambipolar Diffusion. Recall the momentum equation

for a collisional plasma (Equation 1-9):

r = -DVN ± pNE (2-1)

If E is produced by external means, independent of the plasma conditions,

the changes that E produces have no effect on E . Under these circum-

stances the diffusion and continuity equations form a system that can

usually be dealt with in a straightforward manner. In general, however,

the charged particles in the generatio- -f the electric field, or at least a

significant part of it. Under these circumstances, the problem of describing

the motion of the species in the plasma must include the field in a self-

consistent fashion. To do so requires another relationship to determine the

electric field. In principle, that relationship should be based directly or

indirectly on Maxwell's equations. In particular, we can use Gauss's law

for the electric field, or its more commonly used equivalents; Poisson's

equation and the definition of the field in terms of the scalar potential:

.V 2€ 0 P_
Co (2-2)E = -VO,

where p here is used to represent the volume charge density, 0 is the

electric scalar potential, and EO is the permittivity of free space. Un-
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fortunately, Equation 2-2, along with the continuity and momentum

equations, produces a system of differential equations that can be extremely

difficult to solve.

The difficulty arises because of the extremely large fields that can be

produced by very small net charge densities. For instance, consider the

numerical problem of describing a near-neutral plasma typical of those

found in the positive column of a glow discharge. We will assume a

charged particle density of 10 particles/cm3 , which is well within the

range typical of laboratory plasmas (von Engel, 1965:241). We will also

assume that the numerical errors are on the order of only one part in 106

The numerical errors are equivalent to a charge density that would produce

a change in the electric field of more than 0.18 V/cm. If we assume a

reasonable value of 1.0 eV for the electron temperature, and also assume

that the electrons can be described in terms of the electric potential ý(r) by

the Boltzmann relation N.(r) = N.0 exp(e"(r)/kT.) , we find that the electron

density changes almost 20% in one cm. Obviously, such a drastic change

invalidates the description of the plasma as quasi-neutral and renders the

numerical .- *del useless.

Similar difficulties occur in trying to make simplifying assumptions to

allow analytic solutions. As can be seen from the discussion in the previ-

ous paragraph, an assumption that allows errors in the number densities

of only one part in 106 can lead to faulty values for the electric field that

produce gross errors in the solutions.
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The difficulties in finding analytic solutions to this system led to

Schottky's development of a model that took advantage of quasi-neutrality to

eliminate the need to explicitly include the electric field.

Single-ion Ambipolar Diffusion. Schottky first introduced the concept

of ambipolar diffusion to describe conditions in the volume of the plasma

(Schottky, 1924). He established an analytic solution using the assump-

tions of quasi-neutrality and congruence. The basic principle of quasi-

neutrality is that the extremely strong fields produced by any charge

separation in a plasma tend to eliminate that charge separation. As a

result, the plasma has a near-zero net charge density. The role of congru-

ence can be established by recalling the continuity equation (which, for

convenience, we use in the time-independent form):

v r =S() (2-3)

for each of the two species (positive and negative). Conservation of charge

implies that S(r) for the positive species is equal to that for the negative,

since we cannot create one charge polarity without creating the other.

Therefore, we conclude that the divergences of the positive and negative

species are equal.

Now consider a one-dimensional system. If there is any point where the

fluxes are equal, then they will be equal at every point. This condition is

referred to as congruence. From this, the system of coupled sets of moment

equations plus Poisson's equation can be reduced to a single set of moment

equations. Note that we are not requiring a planar single-dimensional

plasma. All that is necessary is that variations in the plasma be single-
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dimensional. An example would be a cylindrical plasma with symmetry in

the longitudinal and azimuthal directions. Such a plasma can be described

by a one-dimensional model with radial variations only.

Derivation of Schottky's Model. An exposition of Schottky's original

derivation for time-independent diffusion can be found in most basic

plasma texts (e. g., Mitchner and Kruger, 1973: 146-149. von Engel, 1965;

143-145. Chen, 1984:159-160). Schottky's original development considered

a one-dimensional cylindrical case. We will treat the more general case,

paralleling the development given by Chen. Consider the time-indepen-

dent diffusion and continuity equations for electrons and positive ions:

Fi = -DiVN1 + ANiE

F. = -DeVN. - peNeE
(2-4)

V ri=Si

V re=Se

As did Schottky, we assume Ni - N. N . We also assume congruence;

Fi = re at every point in the plasma. From congruence, we obtain

-DAVNi + ý4NiE = -DeVNe - p*NeE (2-5)

which, when coupled with quasi-neutrality, yields

- ýVN (D -D,) (2-6)

This leads to
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(2-7)
= -DaVN

where D. is the "ambipolar diffusion coefficient."

We no longer have a system containing an explicit dependence on the

electric field. Instead, by assuming quasi-neutrality and congruence we

have eliminated the electric field from the system entirely.

Schottky's Solutions. The system generally referred as a "Schottky"

system contains source terms of the form

V.r =vN0  (2-8)

for each species. We take the divergence of the simplified momentum

Equation 2-7, and substitute for V.r using Equation 2-8 as appropriate. The

following boundary conditions are then applied to obtain:

r(0) =0
(2-9)

N(L) 0

where L is the radius or half-width of the plasma, depending on the

geometry chosen. The following solutions result. For planar geometry-

(2-10)

9 N ýosi4Lr)

For cylindrical geometry-

7 (2-11)
r = v N.4oO4)
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where d is the half-width of the planar discharge, R the radius of the

cylindrical discharge, and Xo is the first zero of the zero-order Bessel

function Jo , and JI is the second-order Bessel function. Inherent in each of

these solutions is an eigencondition on D, and v (we discuss these condi-

tions in a later chapter in a more general context):

a ~(212)

Da

We should note that this model, as is true for all models based upon

quasi-neutrality, is only valid away from the boundary of the plasma. Near

this boundary, in what is generally termed the plasma sheath, large

charge differences are developed that invalidate the assumption of quasi-

neutrality. For these reasons, other models that explicitly deal with the non-

neutral regime must be used to calculate sheath potential and thickness.

Before we leave Schottky's model, it is important to clearly restate the

assumptions Schottky made.

1. He assumed quasi-neutrality.

2. He assumed equal fluxes (or "congruence").

3. And, although this point is usually ignored in discussions of
Schottky diffusion, Schottky implicitly assumed (but did not take
advantage of) VNi = VNe.

This third assumption will assume more significance later, when the

new model of multi-ion ambipolar diffusion is presented. In fact, we shall

see that the new model, which uses assumptions 1 and 3 explicitly, reveals

assumption 2 as a consequence in those physical situations where it is
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valid. For the moment, we will merely note that 3 is implicit in Schottky's

replacing the separate ion and electron densities with a single N, and then

describing the system in terms of VN instead of in terms of VN. and VNi.

Tonks and Langmuir. Tonks and Langmuir used a totally different

approach to the problem of describing discharges (Tonks and Langmuir,

1929). First, they assumed that the ions started from rest, with their only

velocity being that pr-iuced by the field. Furthermore, instead of using the

momentum equations per se, they made two explicit assumptions:

1. The electrons were in equilibrium with the scalar potential, such
that the electron distribution could be described by the Boltzmann
relation as (Tonks and Langmuir, 1929: 883)

Ne-- x =e ie (2-13)No

2. The discharge can be entirely described in terms of Poisson's
equation, where the charge density is expressed as the difference
between an electron charge density derived from Equation 2-13 and
an ion charge density whose definition varied according to the
particular situation, but which could always be written in terms of
an ion velocity.

Depending on how they expressed Poisson's equation, Tonks and

Langmuir could describe a wide variety of discharge phenomena. They

examined a parameter space that spanned two characteristic effects:

1. Mean free path for collision. They examined the cases where the
mean free path for collision was much longer ("free fall") or much
shorter ("diffusion") than A , as well as the intermediate case.

2. Effect of the electric field. Although their terminology was
somewhat different, they divided the discharge into two regions; the
plasma, where quasi-neutrality held, and the sheath, where it did
not hold.

They developed a variety of solutions for the plasma region, including

source terms for both uniform ionization and ionization proportional to the
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electron number density. Their principal result in the sheath region was

an expression for the sheath thickness, in the free fall limit. Although

most of their development was based on assuming that the ions' thermal

velocity was negligible compared to the field-induced motion, they did

examine cases where the thermal velocity was small but non-zero. They

also examined solutions for geometries corresponding to probes inside the

plasma.

Tonks and Langmuir used Poisson's equation as the basic equation of

their system (Tonks and Langmuir, 1929:883):

V .7e•oef+ 4ze I J = 0 (2-14)e2 -- fo 4eo +4e vz(r)

where No is the elec, density at the origin, f0 is a parameter with value

1, 2, or 3 in planar, cylindrical, or spherical geometry, respectively, N. is

the number of ions produced per cm-s at z, and v,(r) is the velocity of ions

which were generated at z but are now at r.

The key to solving this equation is the proper determination of N z and vz.

For uniform external ionization, N, is a constant. For ionization dependent

on the electron density, N2 = vNe(z). For free fall, vz is determined by the

difference in potential the ion has been subjected to in traveling from z to r.

For diffusion, v, is the drift velocity determined by the sum of the field-

induced and gradient-induced fluxes (Tonks and Langmuir, 1929:887):

vz = 4D/Np~iNp/dr - (eD/kTg)dV/dr (2-15)

This is recognizable, of course, as the momentum equation for ions, with

Np(r) as the ion particle density.
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Tonis and Langmuir divide the discharge into two regions. For the

plasma volume, they assume that the Laplacian of 0 is negligible (Tonks

and Langmuir, 1929:883). In the region they define as the sheath, they

assume no curvature in the system (L e., they assume planar geometry for

all systems), they assume that the ion current density in the sheath is

constant, and they drop the electron charge term from the generalized

plasma-sheath equation "when it becomes negligible" (Tonks and Langm-

uir, 1929:905)

Tonks and Langmuir recover Schottky's description for plasmas with

ionization proportional to the electron density and mean free path much

less than A. In order to explain this, we need to examine the consequences

of Equation 2-13 more closely. If we take the logarithm of that equation, and

then the gradient, we find

EIVO = V . (2-16)

De No

where we have used the Einstein relationship to express e/kT° in terms of 4±

and D. We can then use the definition of the field in terms of the scalar

potential to express Equation 2-16 in a suggestive form:

PeNeE =- D°VNe (2-17)

But, this is the time independent momentum equation for electrons, for the

case where the electron flux is approximately zero. (See Equation 2-4.)

Let us examine the concept of zero electron flux more closely, especially

in the context of ambipolarity. We note that the electron mobility and

diffusion coefficients significantly exceed that of the ion. Ambipolarity is
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the condition that a self-consistent field in the plasma will develop so as to

equalize the ion and electron fluxes in a quasi-neutral plasma. Given the

relative magnitudes of g and D for the two species, this equalization arises

by the electric field achieving a necessary value to reduce the electron flux

to match the ion flux. The result is that the field-induced flux of electrons is

oppositely directed, and essentially equal to, the gradient-induced flux.

This is described by Equation 2-17. Therefore, Tonks and Langmuir's

assumption of the Boltzmann relation for the electrons and the assumption

of quasi-neutrality implies that the radial electric field is equivalent to the

ambipolar field. We will revisit this result in the next chapter, when we

discuss the new ambipolar diffusion model. In that chapter we will

examine exactly under what circumstances the Boltzmann relation follows

from ambipolarity for circumstances where the electron mobility and

diffusion coefficients are much greater than the ion mobility and diffusion

coefficients.

Since Tonks and Langmuir's results produce ambipolar diffusion in

certain cases, Schottky's theory is a limiting case of Tonks and Langm-

uir's for the regime in which Schottky's theory is applicable:

1. In assuming that the Laplacian of the potential is negligible in the
plasma, Tonks and Langmuir set the expressions for ion and
electron density as defined in our Equation 2-14 equal to each other,
which implies quasi-neutrality.

2. Tonks and Langmuir assume an expression for the electron
number density that requires the electric field in a quasi-neutral
plasma to be equivalent to the ambipolar field.

3. Tonks and Langmuir incorporate the momentum equation for
ions to determine the ion velocity.
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Ecker. Ecker examined a subnormal discharge in mercury by assum-

ing congruence in a development similar to Schottky's, except that he did

not assume quasi-neutrality (Ecker, 1954). Instead, he explicitly distin-

guished between the positive and negative charge densities to obtain a more

general form of Schottky's model. For quasi-neutral plasmas he obtained

Schottky's model exactly. In general, his model did not require any

particular relationship between the positive and negative number densities.

In order to formulate approximate solutions, however, he assumed that the

two densities had the same spatial dependence (this is equivalent to the

proportionality condition for multi-ion models, which we will discuss

shortly). His technique produced those solutions for which the spatial

dependence of ions and electrons was the same, and which also minimized

the total error in the differential equations.

Allis and Rose. Allis and Rose addressed the transition regime between

free and ambipolar diffusion (Allis and Rose, 1954). They also used

congruence without assuming quasi-neutrality. Their approach relies on

modifying their expression equivalent to the Schottky eigencondition in

Equation 2-12. That eigencondition applies to free diffusion, ambipolar

diffusion, and the transition regime, if the proper definition of the diffusion

coefficient D is used. Schottky's D. is the appropriate form for ambipolar

diffusion; Allis and Rose sought the appropriate form for other regimes.

They produced analytic solutions applicable to various situations by several

methods. First, they assumed that the ratio of positive ions to electrons was

constant in defining the equivalent to the ambipolar diffusion coefficient.

They investigated a discharge with the electron temperature much greater

2-13



than the ion temperature by dividing it into an interior region and a sheath.

They also made approximations appropriate to a plasma near the quasi-

neutral limit. These methods allowed them to produce analytic solutions

for the problem. They also produced a numerical solution for a hydrogen

discharge between parallel plates, primarily to investigate the range of

validity of their analytic approximations. They found that the spatial

profiles were only crudely approximated by the theory, but that various

integrals over the number densities were reasonably accurate.

Summary for Single Ion Models. We have presented only four of the

many single ion models that have been developed to describe discharges.

We chose these four because they are representative of work in this area.

Schottky's is the seminal work on ambipolar diffusion, but only examines

ionization generated by the electrons in the plasma volume, without

including external sources or recombination. In contrast, the theory of

Tonks and Langmuir covers a very broad range of systems, in three

different geometries, for both volume and external sources, and spans the

regime from highly collisional plasmas to free fall plasmas. Ecker, as does

Allis and Rose, only considers collisional systems, but includes the entire

regime of ambipolar to free diffusion. Although Ecker's formulation is

slightly more general, Allis and Rose are able to produce solutions for a

wider range of cases.

All these single-ion models, of course, share one failing for the present

purpose; by definition, they do not include multiple ions. This is not to say

that they could not be extended to address multi-ion discharges, but only

that the authors did not do so. The multi-ion models we will shortly present
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are, in many cases, extensions of the single-ion models presented here,

with varying levels of success. Other single-ion models could be included in

this summary, but they would merely fill in various portions of the parame-

ter space from free fall to collisional plasmas, and from free diffusion to

ambipolar diffusion. They would still not address the fundamental problem

of multiple ion species.

Phelps has written a particularly thorough, critical, and tutorial review

of diffusion in plasmas, including a number of different regimes in single-

ion diffusion (Phelps, 1990). He reviews contributions of Schottky, Tonks

and Langmuir, and Allis and Rose in greater detail than we do here, and

includes works by other authors that are variations of the above ap-

proaches.

Multi-ion Ambipolar Diffusion

We now address situations where there are more than two species in the

plasma. The reason for doing this is quite simple; a number of realistic

systems cannot be accurately described without accounting for the effects of

more than one ion species. The various species can be positive or negative,

and can be formed by a variety of processes, including ionization, charge

transfer, attachment, and dissociative attachment. For the purposes of this

chapter, however, the exact details of the formation processes for the

various species are unimportant.

Approaches to the problem of multi-ion diffusion may be divided into two

classes: those that assume proportionality and those that do not. We note

that, in many cases in which proportionality is involved, this assumption is

2-15



made with no other justification than facilitating a solution. We address

proportional models first. Next, we examine models where the assumption

of proportionality is not made. Generally, (except for the model developed in

this effort) these models allow only numeric solutions.

Proportional Solutions. Numerous investigations of ambipolar diffusion

assume that the various particle densities have the same dependence on

position. This assumption is called proportionality. We will discuss one

such investigation (Oskam, 1958) in detail, and briefly describe others.

Oskam. An early multi-ion ambipolar diffusion model was Oskam's

(Oskam, 1958). We choose to review the work of Oskam because of the

thoroughness with which he delineated the system, and to demonstrate the

errors proportionality can produce when applied to nonproportional

plasmas. Oskam was seeking to provide the theoretical underpinnings to

experimental work he had performed in microwave-driven plasmas. He

was interested in two regimes:

1. The discharge plasma. Here, the microwave fields are providing
a continuous source of ionization and excitation. The electron
temperature is much higher than the gas or ion temperatures, and
the plasma is in a steady-state condition. (The microwave field
changes too rapidly for the plasma to follow.)

2. The afterglow plasma. Here, the microwave excitation has
stopped, so the plasma density is decreasing with time, due primari-
ly to diffusion losses. All species in this particular discharge have
equilibrated to the temperature of the background gas, so the elec-
trons and ions are at the same temperature.

Oskam used a multi-ion version of the momentum and diffusion

equations, which he wrote as:
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r+ -D, VN., i + pt+, iN+, iE

r., j = -D-.,jVN.,j + ýL, iN.,jE (2-18)

v+
- N.,j,

"V .,j + -'• --. ,j

Here, the +,i subscripts refer to the various positive species, and the -j

subscripts refer to the negative species. We will maintain this notation for

the moment.

Following the assumptions in Schottky's derivation, Oskam assumed

that the total current density and the total charge density were both zero,

which is equivalent to

ij (2-19)

Sq+,iN+,i = X q.,jN.,j
i j

Using these two equations, he eliminated the electric field in exactly the

same manner as Schottky. This led to the following system of equations:
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(D+1 kVN+. k - D., kVN., kr+,i ="D+, iVN+, i + ýL+, iN÷, i • tk N, -k, k

Yi, PkN+, k + Y, P.,kN., k/
k k

_ / ZD+, kVN+, k" D-, kVN-, k'

F.,j~Y P=- D.,jVN k-•N, + Y, ý-,kN., k (2-20)

k k

V-* 8N+,i+ =S+,i

atv.~M j+i
-. aN.,,j

V r.,j +- S-,j

We see that the momentum equation that relates r+, j to VN+, i also in-

cludes all the other VN's, and similarly for the equation relating r+,j to

VN.j. Oskam found the resulting system extremely difficult to solve. His

approach to the problem involved assuming proportionality in order to be

able to find solutions:

N+,i K+,i Ne
(2-21)

N.,j =Kj NN

Oskam admits in his paper that this assumption is not always justified

(Oskam, 1958:368-369). In particular, he notes that it was not appropriate to

his time-varying afterglow plasma, where the various diffusion modes

present had different characteristic decay times. Only after the plasma had

decayed to the fundamental diffusion mode was proportionality valid.

However, he also addresses negative ions, which also render proportionali-

ty invalid. As we shall see shortly, the difficulties are not specific to
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Oskam; the assumption of proportionality is very common among authors

wishing to find analytic solutions to this problem.

Other Proportional Solutions. To this date, although many authors

have addressed diffusion in quasi-neutral gases, we have seen no papers

that use a multi-ion ambipolar diffusion model without using Schottky's

assumption of congruence. None of the authors has been able to solve the

system analytically without restrictions of some kind. Usually those

restrictions are as severe as those imposed by Equation 2-21, or are exactly

the same restrictions as Equation 2-21. In some cases, the assumption is

perfectly valid for the reactions being modeled (although Schottky-based

models do not lend themselves to predicting that validity a priori). For

instance, Phelps and Brown assume proportionality when investigating

He* and He2* in an afterglow discharge (Phelps and Brown, 1952). The only

sources and losses they include are single-step ionization by the electrons in

the plasma, charge transfer, and diffusion. In addition, all the species are

at the same temperature. As we will see in later chapters, if they were

dealing only with the fundamental diffusion mode, then for such plasmas,

proportionality holds.

Occasionally, the assumptions required are not explicitly stated. For ex-

ample, Thompson found analytic solutions for the case of a single negative

and a single positive ion species, plus electrons (Thompson, 1959). However,

Clouse points out that to do so, he made a quasi-proportional assumption

(Clouse, 1985:7)

VN2 =_ (2-22)

VN. N.
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where e is the ratio of the gas to electron temperatures, equivalent to 1/y in

Thompson's notation. This is an extremely severe assumption, equivalent

to requiring N. to vary as (N.) (Clouse, 1985:15). Furthermore, the assump-

tion is never explicitly stated. Instead, it can be shown to be a consequence

of the form Thompson derives for his ambipolar diffusion coefficients

(Clouse, 1985:57-59).

We could continue with other examples. However, doing so would add

little to the discussion. Rather, we again refer the interested reader to the

review article of Phelps, who provides a fairly thorough discussion of

proportional multi-ion diffusion (Phelps, 1990.)

Nonproportional Solutions. A number of authors have produced

numerical solutions to various problems involving multiple ions. We will

give some examples; this list is not, and is not intended to be, exhaustive.

Rather, we concentrate on articles that have importance, either to the field

as a whole, or to this work in particular.

Edgley and von Engel. Edgley and von Engel performed a compre-

hensive analysis of the theory of the positive column in electronegative

gases (Edgley and von Engel, 1980). They did not use ambipolarity, but kept

the electric field as a separate dependent variable, and explicitly included

positive ion inertia in the momentum equation. This inclusion allowed

them to model free fall, where the charged particles undergo no collisions;

free diffusion, where the particles undergo collisions, but the plasma

density is low and therefore electric field effects are small enough that the

particles diffuse as if uncharged; and ambipolar diffusion, where both
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collisions and electric field must be taken into account. The resulting

system of seven differential equations and eight boundary conditions was

solved numerically. Their analysis was very thorough, but produced an

extremely wide parameter space to search. As a result, they were only able

to find numerical solutions for a restricted range of their parameter space.

They were unable to find any analytic solutions.

Ferreira, Gousset, and Touzeau. Ferreira, Gousset, and Touzeau

adapted Edgley and von Engel's results by assuming quasi-neutrality and

ignoring positive ion inertia (Ferreira et alia, 1988). They applied the model

to the oxygen positive column. The resulting system was solved numerical-

ly. Of interest is their critique and comparison of previous works in this

area, which was concerned with validity of boundary conditions in their

own and previous authors' work. In particular, they pointed out that

previous authors had overlooked the requirement for the proper number of

eigenconditions to produce physically realistic solutions. One of the two

eigenconditions they chose is equivalent to Schottky's eigencondition in

Equation 2-12. They also establish a second eigencondition relating the

magnitude of the on-axis particle densities for electrons and negative ions.

Although this eigencondition is valid for their system of differential

equations, its appearance as a condition for successful solution instead of a

consequence of the solution is due to the normalizations they have chosen

for their system, not to the physics of the problem. This point will be

addressed in detail Chapter V when we discuss analytic solutions to the

model developed here. However, we point out that their approach and ours

represent different paths to the same result: they determined the on-axis
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ratio that the solutions had to have, and then found solutions that had that

ratio, and we found solutions that met all the boundary conditions, and

then from those solutions found the on-axis ratio.

Valentini. Valentini authored or coauthored a number of works

involving multi-ion discharges (e. g., Valentini, 1979. Valentini, 1980a.

Valentini, 1980b. Valentini, 1988. Shapiro and Valentini, 1991). These

examined various combinations of diffusional and free-fall plasmas, low

and high ionization fractions, quasi-neutral and non-neutral plasmas, and

single and multiple ion species. Valentini differs from others in that he

retains the inertia term for the ion momentum equation, even in diffusional

plasmas.

We will consider three examples. First is Valentini's 1980 article on

discharges containing excited and multiply charged ions (Valentini, 1980b).

Valentini examined "...positive columns at low pressure containing several

species of ions...'; in particular, he included singly charged ions and either

doubly charged ions or singly charged excited ions, as well as electrons

(Valentini, 1980b; 243). Since the discharge was at low pressures, the

momentum equations for ions contained the inertia term, but no pressure

term. He stated that this neglect of the pressure term "...is applicable if the

ion temperature is considerably smaller than the electron temperature."

(Valentini, 1980b:245). This is appropriate for the conditions he is interest-

ed in. The pressure term can be neglected if the average particle velocity is

greater than the thermal velocity. In the regimes Valentini was investigat-

ing, the electron transport was dominated by diffusion but the ions were in

free fall. This implies that the average electron velocity is determined by
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the electron thermal velocity. Since Valentini assumed congruence and

quasi-neutrality, the electron and ion average velocities were equal. As a

result, comparing the ion average and thermal velocities is equivalent to

comparing the electron and ion temperatures, which justifies the state-

ment quoted above. Valentini also claimed that inclusion of both the

pressure and inertia terms leads to mathematical divergence in the

system. He assumed quasi-neutrality except near the edge of the plasma,

and congruence, and then used these assumptions to eliminate the electric

field from the continuity and momentum equations for the electrons and

ions. Various types of power series expansions produced values for the

variables at the axis of symmetry, and numerical integration then pro-

duced solutions. In all cases, the solutions he presented "...are... for

discharges in argon in free-fall conditions..." (Valentini, 1980b;243,257).

Although he claims to extend Tonks and Langmuir to plasmas containing

two species of ions, he actually does so only for the case where two ions

exist, one singly charged and one doubly charged, and where the singly

charged ion dominates the discharge; other cases are outside the regime of

his analysis (Valentini, 1980b; 243, 262).

Valentini's 1988 paper discusses the mathematical difficulties that arise

for very high drift velocities if both the inertia and pressure terms are

retained (Valentini, 1988). He develops a single-ion model that retains both

terms, and then uses a number of different power series methods to obtain

solutions without assuming quasi-neutrality. He then extends this to a

multi-ion model that explicitly includes quasi-neutrality. He provides no

solutions for the multi-ion case.

2-23



Finally, consider Shapiro and Valentini (Shapiro and Valentini, 1991).

This is an extension of the article just discussed to include high ionization

rates in multiply charged ion plasmas "...under free-flight conditions."

(Shapiro and Valentini, 1991:391). The authors treat electrons, single and

doubly-ionized ions, and neutral gases in a cylindrical quasi-neutral

positive column at very low pressure. They consider very high degrees of

ionization, so that the background gas density can no longer be considered

constant, but must be included in the differential equation system. The ion

inertia terms are included in the momentum, and the pressure terms are

discarded. To solve this system, they assume congruence and quasi-

neutrality. This allows them to eliminate the electric field from their

system. They then establish boundary conditions based on the symmetry of

the system, the normalization of the electron density, and the requirement

that the derivatives of the variables be bounded. They use a power series

expansion about the axis of symmetry to establish the starting values for the

system, and then numerically integrate the system. They present results

for a number of cases involving variations in the ratio of ionization rates for

the two species, the fractional ionization, and the importance of Coulomb

collisions.

Examination of Valentini's works reveals that they are all similar and

are based on retention of the inertia term in the ion momentum equation,

generally to the exclusion of the pressure term. Although his theoretical

models are very general, addressing the entire regime of the free-fall

discharge and approaching the diffusion regime, his solutions tend to rely

on power series or purely numerical methods to solve the systems. He
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addresses the extremes of the regimes, beyond the interest of other authors.

The articles discussed above are typical in this regard; phenomena

addressed in one, the other, or both include ionization fraction much

higher than the typical positive column (although not out of line for ion

lasers), multiply-charged or excited ions, or nonuniform background gas

density and temperatures. With situations of such complexity, only

numerical solutions are possible.

Wunderer. Wunderer derived a model for plasmas containing

multiple positive ions using Schottky's assumptions (Wunderer, 1978). In

addition, he expanded the electric field in a power series to allow for easier

numerical solutions. He obtained only numerical solutions, but concen-

trated more on showing the general failure of the assumption of propor-

tionality. We will discuss his model in much more detail in Chapter VI,

when we compare the results of our model with previous efforts. Of general

note, however, is that he is one of the few authors to address external

ionization sources for multi-ion discharges.

Conclusions Drawn from Comparison of the Various Models

Table 2-1 summarizes the various features of the models discussed,

including the model to be developed in this paper. Several conclusions can

be drawn from the works described above. First, analytic solutions are not

obtained for models that retain Poisson's equation. Second, none of the

models produced multi-ion analytic solutions without assuming propor-

tionality or some other condition equally restrictive. Third, based on the

difficulties Edgley and von Engel found in producing numerical solutions,
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Table 2-1. Comparison of Various Models

Article Additional Major Area of Solutions
Assumptions Applicability

Schottky, 1224 Quasi-nedtrality, Single-ion Analytic
congruence, zero Diffusion
charge gradient

Tonks and Quasi-neutrality, Single ion, free- Analytic
. 1929 congruence fall to diffusion

Ecker, 1954 Congruence, Single ion free Numerical
proportionality diffusion

Allis and Rose, Congruence Single ion free Numerical
1964 diffusion

Oskam, 1958 Quasi-neutrality, Multi-ion, Analytic
congruence, diffusion
proportionality

Edgley & von None Multi-ion, free Limited
Engel, 1980 to ambipolar numerical

diffusion, free
fall to diffusion

Ferreira et Quasi-neutrality, Multi-ion, Numerical
alia,1988 congruence diffusion

Valentini et Free fall Multi-ion, free Numerical
alia, various fall

Present Model Quasi-neutral, zero Multi-ion, Analytic
charge gradient diffusion and

I 1_ _1 numerical

it is difficult to model multi-ion systems by brute force techniques. Instead,

it is generally necessary to take advantage of the physical properties of the

discharge to justify a simplifying assumption such as quasi-neutrality.

In Table 2-1, "Additional Assumptions" refers to assumptions beyond

those necessary to produce the final form of the momentum and continuity
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equations shown in Chapter I. "Zero charge gradient" refers to the as-

sumption that the gradient of the net charge density is zero.

Problems To Be Addressed

A number of problems in describing multi-ion ambiprlar diffusion have

not yet been addressed by other authors. The remaining chapters will

address many of them. At this point, we will describe exactly what those

problems are.

Proportionality. Proportionality has been widely used to describe multi-

ion plasmas, both in theoretical analyses and in interpretation of experi-

mental data. To date there has been no analysis of when it will be valid,

and when it will not. Furthermore, the assumption of proportionality

under present theories does not provide any information about the form of

possible analytic solutions, except for the fact of proportionality itself.

Finally, there are no descriptions of the difficulties in defining and using

measurements of proportionality. All these issues will be addressed in

Chapters IV, V, and VI.

Analytic Solutions. At present there is no multi-ion diffusion model that

produces analytic solutions without assuming proportionality, or some

other constraint equally restrictive. Present theories can only produce

analytic solutions by first assuming proportionality (or some other restricti

ve constraint), finding the solutions, and then seeing if the assumption is

valid. In Chapter V we will see analytic solutions developed in most cases

without the assumption of proportionality or any other restrictive constrain

t. Even when a solution cannot be found without the absumption of propor-
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tionality, the results of the analysis in Chapter IV can used to determine

the form of the solution and verify the validity of the assumption, prior to

determina-

tion of the solutions.

Scaling Relationships. Although scaling relationships for single-ion

ambipolar diffusion are well-known, the lack of analytic solutions has

made development of additional scaling relationships for multi-

ion diffusion difficult to date. In Chapters IV, V, and VI, expressions will

be developed that quantitatively or qualitatively describe the scaling of such

parameters as on-axis densities, species fractions, particle fluxes, and

electron temperature.
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III. New Ambipolar Diffusion Model

Introduction

Recall that Schottkys model of ambipolar diffusion relies on the assump-

tion of congruence, and leads to multi-ion models that cannot produce

analytic solutions without restrictive assumptions. Even though congru-

ence is very often a :alid assumption, it is not universally so. It would be

useful to develop a model that is based on a more general assumption than

congruence, and which allows analytic solutions without restrictions as

severe as proportionality. The model presented here does that.

We will develop the model in a completely general formulation. We will

then look at the form the model takes when used to investigate time-

independent systems containing only positive ions. Finally, we will

transform the system into a dimensionless form that is more convenient for

theoretical analysis than a form using the physical variables.

General Formulation

As did Schottky, we assume charge neutrality:

Xq+iN+, = X q.jN.j (3-1)
i j

We also assume that the gradient of the net charge density is zero, which is

equivalent to assuming that the charge-weighted sum of the gradients of

the particles densities are equal:

Sq+ýVN+ý = ý •qVN.j (3-2)
i j
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This is the implicit assumption that Schottky made, but did not explicitly

use. It cannot be justified on purely mathematical grounds; as long as we

have quasi-neutrality, and not exact neutrality, it is possible for Equation

3-1 to be valid, without Equation 3-2 being valid. For example, let us look at

a hypothetical example, chosen not because it is realistic, but because it

illuminates the mathematical possibilities. We will assume that Ni and

N. may be defined as follows:

Ni = Nox

N. = N0x+8cos Xx)

If we have 8 << 1 , then quasi-neutrality is valid. However, note that we

obtain the following results for the gradients of the number densities:

VNi = No

VNe = Ndl-XMsinxx) 
(3-4)

Depending on the relative magnitudes of X and 5, the difference between

VN* and VNi can be very large, thus violating the assumption.

At first, it would seem that the relatively poor mathematical justification

for Equation 3-2 casts doubts on the model we are developing. However, as

von Engel has pointed out, there are very strong physical grounds to believe

that such a pathological case cannot occur in practice; if there were

differences between the gradients, strong fields would be created that would

eliminate the differences (von Engel, 1965:143). (It should be pointed out

that von Engel makes this assumption, and justifies it, but does not use it.

Equation 3-2 is the crucial assumption for the new model. Because of its

importance, we should discuss the general validity of this assumption, as
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opposed to the assumption of congruence that Schottky used. Congruence

ultimately rests on Equation 3-1 and the continuity equations. From

conservation of charge, we know that the sum of net source terms for the

positive species must equal the sum of the negative terms. From quasi-

neutrality, we know that the sum of MN/-t for the positive terms must equal

the same sum for the negative terms. Therefore, summing the continuity

equations implies that the sums of the V.f's of the two charge polarities

must be equal also. In a one-dimensional system, this implies that the

fluxes themselves are equal. However, in systems of more than one

dimension, it is possible to maintain quasi-neutrality without having the

fluxes equal. Rather, it is sufficient for the magnitudes of the fluxes to be

equal: their directions can be different. For example, consider the common

textbook problem of diffusion in the presence of a magnetic field. The

cyclotron frequency of ions is much lower than that of the electrons. As a

result, it is possible for situations to arise where the ions undergo many

collisions in a single orbit, while the electrons do not. Since collisions tend

to disrupt the coherent cyclotron orbiting, electron diffusion across the field

is restrained by the magnetic field more than the ion diffusion. As a result,

it is possible for the electrons to leave only by diffusing along the magnetic

field while the ions can diffuse across the field. (For a detailed exposition,

see Golant, Zhilinsky, Sakharov, and Brown, Mitchner and Kruger, or

Chen (Golant, Zhilinsky, Sakharov, and Brown, 1980:305-308. Mitchner

and Kruger, 1973: 173-182, 179. Chen, 1984: 173-175).) In consequence, we

see that congruence is generally valid only for one-dimensional plasmas.
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Equation 3-2 rests on much firmer grounds than congruence. First, the

very presence of diffusion itself tends to eliminate small-scale gradients in

particle density. This tendency reduces the gradients in charge density

that could invalidate Equation 3-2. Second, as was noted above, any

gradients that did exist would produce fields that would also tend to

eliminate the gradients. In a real plasma, such gradients imply changes

over a distance on the order of the Debye length at the most. But the fact

that we are describing quasi-neutral plasma is sufficient to ensure that the

Debye length is much smaller that the characteristic physical length A of

the plasma for almost all cases of interest. Therefore, we conclude that

using Equation 3-2 to describe features of size comparable to A for a quasi-

neutral plasma is quite appropriate.

To continue, if we rearrange the first two equations of the system in

Equation 2-8, we get

VN+ += - !+F+ L • E.
D+j D"+

(3-5)

VNj Lj-- r j N~j E
D.j D~j

We now multiply these equations by their charge, sum over i or j, as

appropriate, and set them equal, in accordance with Equation 3-2. It is

then straightforward to use the result to find the electric field:

•= .D,• j najE (3-6)

q•N,4j 'jLN
i + j D~j aj
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Note that the sums are over all positive or negative species.

Upon substituting Equation 3-6 into Equation 3-5 we obtain

r/ k-÷,.
q+, +7.k

L ',k j •-,j

VN ,j  D+,<J Pk. iN

D+ý q+•,ik'_N ,k+ 2:% j:ý-,-N

S q+,i - •. ÷ iq, k " -_' + k

D-ji= +--'÷,i + D- , k!ý-

(3-7)

-+,i + -- •= S+,i

V 1.F.,j+ aNj S.,j

at

Note the significant differences between this form and, for instance,

Oskam's. In Oskam's form, each equation for VN included r for the

same species, plus all the other VN's. In this model, each VN equation

includes all the r 's, but no other VN's. Note also that Oskam's form had,

in the denominator, sums over terms of the form qgiN. Even if we have

singly-charged ions, all at the same temperature, we cannot simplify these

sums. However, Equation 3-7 has sums over terms of the form qNpJD. As

we will see shortly, this form allows for tremendous simplification for

certain conditions.
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Both the new model and Schottky-based models are equally valid for any

system where ambipolar diffusion itself is valid. The differences are that

Schottky-based models use all the assumptions of the new model plus

congruence and that in many cases the new model is much easier to solve,

both analytically and numerically. In the next section we will develop the

formalism for such cases.

Time-Independent Formulation, Positive Ions

It is especially fruitful to examine time-independent cases involving

positive ions. In our formulation, only the continuity equations had explicit

time dependence. If we consider stationary conditions and assume that the

only negative species present are electrons, Equation 3-7 becomes

'VN* Pe N_ j D

"D,9 De ) De

Dj I). X~ j Do

•JN

J
(3-8)

V .im=S 1

V-re sre

Now, recall the Einstein relationship for ions:

p= - (3-9)
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In almost all plasmas where sufficient collisions occur to make diffusion a

reasonable model, the ions will be in thermal equilibrium with the back-

ground gas, which means that all the ion species will have the same

temperature. Therefore, we see that p/Dj is equal to qj/kT+ for all ion

species, where "+" refers to the values common to all the ions.. So, we see

that X(Xtj/Dj)Nj now becomes 1/kT÷YqjNj . But, from the assumption of

quasi-neutrality, we have YqjNj = eN, , for positive ions. Therefore, the

momentum equations become

DjNe-De -De P++P,)

(3-10)

VNj=: l+I +i

I~~D. De

Here, we have defined g.JD, as equal to e/kT÷. For singly charged ions, we

note that ±.I/D÷ = pj/D3 precisely. For multiply charged ions, we have

gt/D÷ = tj/(DA) , where Zj is the multiplicity of the charge.

We immediately discover that this form is much simpler than those

based on the assumption of congruence in Schottky's model. The equntion

for Ni no longer depends on any other ion density. In addition, the equation

for Ne does not depend on any particle density at all. In Chapter V we will

see how to take advantage of these relationships to produce analytic
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solutions. We do so for singly charged ions, but note that much of the

analysis would apply to multiply charged ions, as well.

We note that in some instances a similar transformation might be used

to model systems containing negative species. If the electrons are at the

same temperature as the negative ions (as might occur in an afterglow

plasma, for instance), then the arguments given above would apply to the

negative species, producing a similar simplification. We will not go into

these systems in detail. However, consider such a system with a single

positive species, denoted by "+", a single negative species, denoted by "-",

and electrons, denoted by "e". The analog to Equation 3-10 would be

VN=.A._N D. D.o D
Do DeN+ t +ýL

SD,.D

VN.= r. DLN- D)+ D9 D. (3-11)

D- f.N++ P|+ +DgD. D".N D.

17+ re r.-
VN+ r,_ D+ D. DI.(+ D <I; X) ý

DD D+D

Here, jiJD. denotes both electron and negative ion values. We point out that

this system, although app- aring to be analogous to that described in

Equation 3-10, does have a significant difference. For the system described

in Equation 3-10, the most common source term depends on Ne, which is

the only negative species. As we will see in the next chapter, that allows us

to find analytic solutions in some cases. Here, N. is not the only negative
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species. That renders the solution techniques of the next chapter less

useful. We will discuss this somewhat further when the analogous cases

arises in the next chapter.

Dimensionless Differential Equations

At this point we will transform the system of equations from the

physical variables to a new set of dimensionless variables. Note that this

will not necessarily result in normalized forms. Normalization is the

process of defining the units by which we will measure a quantity so that

the value of the quantity at some convenient point is 1. Although this may

make numerical calculations easier, it does not necessarily make the

physics any simpler. When we transform into dimensionless form, we

rescale the quantities to make them all dimensionless. This generally

involves dividing or multiplying them by some number characteristic of the

system. As a result, the scale parameters are of physical significance,

whereas in a brute force normalization they may not be.

Justification for Dimensionless Form. The use of a dimensionless

system gives us several advantages:

1. Simplifies the equations by reducing the number of parameters.
This allows an easier understanding of the underlying structure of
the differential equation system.

2. Replaces the physically observable parameters in the original
equations with parameters that are more significant to the physical
processes occurring in the system. This highlights the most impor-
tant of those processes and clarifies the scaling of the system.

The dimensionless form was found most useful for the present model in

forming and evaluating analytic solutions. For purely numerical solu-

tions, it is often just as easy to use the physical quantities. For this particu-
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lar formulation, introducing dimensionless forms led to a numerically less

stable system. We will discuss that point fi-zther when we discuss numeri-

cal solutions.

Definition of the Dimensionless Variables. First consider the spatial

coordinate, x or r. We divide that coordinate by the distance from the

center of the plasma to the edge:

d (3-12)

The form we choose depends on whether we are using cylindrical or

spherical geometry. Here R is the radius of a cylindrical plasma, and d

the half-width of a planar plasma. This gives us a spatial coordinate that

ranges from p = 0 at the axis or plane of symmetry of the system to p =1

at the edge of the plasma.

Next, we consider the particle densities. We define

n =NL3  (3-13)

where L is either R or d, depending on whether we have cylindrical or

planar geometry. Notice that the dimensionless particle densities still

satisfy quasi-neutrality:

nj = n. (3-14)

Now, we define particle current densities:

yin EL 4  (3-15)

D

Notice that the Y 's do not satisfy congruence, even if the r 's do. Rather, we

find

3-10



For the source term, we define

s = L5  (3-17)
D

This definition is for the most general form of S . We will define other

quantities related to more specific source terms later. Note that, although

we have

(3-18)

we do not obtain the same result for the dimensionless form. Instead we

see

siDA = seD (3-19)

We define the dimensionless field as

-E= •--LLi (3-20)D+

Finally, we define

p.

C= D_=kT+ (3-21)P kTe

D+

Dimensionless Equations. With the definitions above, the dimensionless

equations become (see Appendix A):
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S1+e

V i• i (3-22)

V .Ye =so

YVD. + y*,
nE-(l+) + e) I

Note that the gradient operator is now with respect to p, not r. We will

maintain that definition when using the dimensionless formulation

throughout the remainder of this paper, unless specified otherwise.

Before we leave these equations, we will exploit the last expression in

Equation 3-22 to recover the well-known Boltzmann relation. First, we note

that, in most cases, De is several orders of magnitude greater than Di for

any of the ions. This implies that Ai is much greater than ye for at least one

species. (This is the essence of the small-e-flux approximation, to be

addressed in more detail in Chapter 5.) Since Vne is of the approximate

order of E YT + ye , we conclude that y. can be neglected compared to Vni..

We then express the electric field in terms of the scalar potential and

integrate, to obtain the Boltzmann relation:

No = Neoexp(e#/kTe) (3-23)

The significant conclusion is not the recovery of the Boltzmann relation,

since it is commonly used to describe the electron density in ambipolar
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diffusion plasmas (Tonks and Langmuir, 1929: 883). Rather, it is the limits

of the validity that the new model places on the use of the Boltzmann

relation in describing ambipolar diffusion. The Boltzmann relation is the

solution of the ambipolar diffusion equations for the electron density only in

those cases where the electrons are much more mobile than the ions.

Conclusions

We have now developed a new model describing diffusion in quasi-

neutral plasmas. The fundamental difference between this model and

those based on Schottky's is the substitution of Equation 3-2 for congruence.

However, even though Equation 3-2 mathematically does not necessary

follow from quasi-neutrality, we find physical grounds for believing it to be

valid in situations where congruence is not. In addition, the model that

results has a form that will prove to make analytic solutions possible in

situations where other models cannot.
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IV. Implications of Proportionality

Introduction

This chapter examines the concept of proportionality and its implica-

tions for multi-ion ambipolar diffusion. We have several reasons to do so.

First, we wish to find conditions under which the assumption of propor-

tionality is valid. Second, we wish to be able to predict the relative scaling of

the number densities for the proportional analytic solutions that we will

develop in the next chapter. Third, we wish to apply those predictions to

finding analytic solutions for systems where proportionality is not neces-

sarily valid.

We will introduce proportionality more formally than we have before,

inu ng various ways of expressing it. We will then determine a set of

necessary conditions for proportionality to hold, and examine the physical

consequence of those conditions. We will examine some typical plasma

systems, (including the ones we will discuss in Chapter V), and use the

conditions determined in this chapter to explain why proportionality does

or does not hold.

Note that we do not address in this chapter the question of how far a

system can deviate from true proportionality before proportional solutions

no longer provide an adequate description of the system. The reason is that

the main emphasis of this chapter is on analytic solutions. Such questions

are appropriate for the various numerical cases examined in Chapter VI.
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Definitions of the Concept of Proportionality

Proportionality in the most limited usage of this document is the

condition that all the particle number densities have the same spatial

dependence, differing only by a multiplicative factor. More general usages

include proportionality of the fluxes, and of the source functions. Regard-

less of the exact usage, the important concept is that some function has the

same spatial dependence for all the species.

Proportionality is usually defined in terms of the various ion densities

being proportional to the electron density:

S= KINe(-) (4-1)

There are other formulations as well. Those which we found useful in this

research will be discussed in the next sections.

Proportionality for the Normalized Equations. Recall the definition of

the normalized number density:

n = NL3  (4-2)

Since L is a constant, independent of r, we immediately see that a formu-

lation of proportionality exactly equivalent to Equation 4-1 is

ni(p) = Kife(P) (4-3)

This is the form we will use henceforth.

Other Expressions for Proportionality. There are several ways to

express proportionality, which are totally equivalent to the definition given

above. First, let us take the gradient of that definition to obtain

Vni(p) = KIVnr(p) (4-4)

Mathematically, we know that any functions that satisfy Equation 4-3 must

also satisfy Equation 4-4. Therefore, Equation 4-4 is a necessary condition
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for proportionality. Let us now show that it is generally sufficient, as well.

Note that Equation 4-4 implies

ni(p) = Kn.(p) + C (4-5)

where C is some constant, as yet undetermined. However, we note that

the Schottky boundary condition n = 0 at the boundary of the plasma is valid

to a very high accuracy for diffusion-dominated plasmas. This boundary

condition cannot be met for C * 0 . Therefore, we determine that C is

identically zero, and proportionality holds.

From these arguments we see that proportionality of the gradients is a

necessary and sufficient condition for proportionality of the number

densities themselves. Therefore, for a particular situation, if we have

shown the validity of Equation 4-3, we have shown the validity of Equa-

tion 4-4, and vice-versa.

Finally, we will mention another formulation. Since the constant Ki is

the same whether we are discussing the number densities or their

gradients, we have

Vni(p) ni(p)

Vn.(p) ni(P) (4-6)

or, equivalently,

Vn.(p) Vni(p) (4)-- = (4-7

nr(p) ni(p)

Physical Implications

The conclusions we have drawn so far rely on mathematical manipula-

tion of very general conditions. Therefore, although they are very broad in

application, they also lack somewhat in immediate utility and physical
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relevance. We will now include the results of the model of ambipolar

diffusion developed in Chapter III to produce more useful expressions.

Ratio of the Fuxes. We will develop an expression for the ratio of the ion

flux to the electron flux by first considering the ratio of the gradients again:

Vni(p) =Kj (4-8)

Vn.(p)

From Equation 3-22 we find expre3sions for Vn. and Vni . With those

expressions, Equation 4-8 becomes

S J (4-9)

With some algebraic manipulation, and taking advantage of the relation-

ship ni/n. = K, , we can simplify this to

(4-10)

J

Note that this simple form is not due to any simplifying assumptions, but

rather reflects the inherent symmetry of the equations themselves.

With this relationship, we can write

(4-11)

The right hand side of this equation is independent of the particular ion

species denoted by the subscript i . Therefore, all the ri's have the same

spatial dependence, or are proportional. Note that this does not imply that
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the proportionality constant for the dimensionless fluxes is Ki , or equiva-

lently, -A = Ky. . In order to have yi = Kif , we would need y. = jyj. In-

stead, we have y. = jDj- .

Since Equation 4-10 is a direct consequence of proportionality, we see

that it is a necessary condition for proportionality to hold. In fact, we can

state that a necessary condition for proportionality is simply for that ratio to

be a constant with respect to spatial variation; if it is not constant, it

certainly cannot be equal to KI.

Note that neither Equations 4-10 nor 4-11 are sufficient conditions: in

deriving them, we used proportionality in the form ni/n. = Ki to simplify

the equation. This prevents us from reversing the argument to show

sufficiency.

Source Term Proportionality. Expressing Equation 4-10 as

(4-12)

we take the divergence of both sides and then divide to obtain

(4-13)

Therefore, this relationship is a necessary (but again not sufficient)

condition for proportionality. This is the relationship that is, in fact, the

most useful, for it allows us to determine that proportionality solutions do

not exist for a particular case without knowing the solutions. As before,
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Equation 4-13 is still a necessary condition even if the constant is not known

to be ni/n.

In fact, we will henceforth express Equation 4-13 and its variants using

CQ instead of K , to emphasize that the necessary condition is that the ratio

be a constant, whether we know that constant to, indeed, be Ki or not. In

practice, this position is probably overly conservative. However, we wish to

keep in mind that, since Equation 4-13 is only a necessary condition, it is in

principle possible to have a system that satisfies Equation 4-13 and yet is

still nonproportional. Only after we determine the solutions can we verify

proportionality. The importance of Equation 4-13 lies in being able to

determine the allowed form of the proportionality constant before we have

the solutions available to us.

Case Studies of Proportionality for Particular Source Terms

Our emphasis now turns to discovering how the conditions for propor-

tionality we just developed can be used in finding solutions for systems. To

that end, we first define a generalized source term:

V.Yk = sk(p) + Qk(ne,ni) (4-14)

where Qk is a multivariate polynomial in n. and all the ni 's. We note

that here the "k" subscripts refer to either electrons or ions. This source

term can be used to describe any dependence on position, n., or the various

rn 's, as long as the dependence on the ni's is itself independent of position.

(As an example, if a particular term in Qk were of the form anm, then

neither a nor m could be a function of position.) We refrain from express-
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ing Qk more explicitly; since it could include all combinations of all

powers of all the species, such an expression would be extremely cumber-

some. Also, for convenience, we exclude from Qk any constant terms; any

such term could be more conveniently expressed as part of Sk •

Let us now examine specific cases. We shall come back afterwards and

draw further conclusions, guided by the results of the examples.

Volume Ionization. First, we examine the case where a generalized

volume ionization is the only ionization term present. Then, the necessary

condition for proportionality becomes

S=(4-15)

We will express Equation 4-15 in a different form:

Q Y 4-- = P (4-16)

where we have defined P = XQj

Equation 4-16 is equivalent to stating the equality of two polynomial

functions: QQCj and P. In order for any two polynomial functions to be

equal, they must be equal on a term-by-term basis. But, P is independent

of i. l1herefore we would not, in general, expect proportionality to hold.

As a result, our conclusion is that proportionality generally does not occur

for systerns with arbitrary volume ionization source terms.

This, of course, does not eliminate the possibility of particularly simple

but still physically realistic cases where proportionality may hold. Let us

now consider some of those cases. We will consider a specific example of

the source term above:
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V .-A = c4rn mi + aijnjm'j (4-17)

where aik is the rate constant for formation (or loss) of species i due to

species k , mi refers to the dependence of the source term on the electron

density, mik refers to the dependence of species i on the particle density for

ionic species k , and where k represents either ionic species or electrons.

From Equation 4-13, we know that for proportionality to be a possibility at

all, we must have

V =C (4-18)

This leads to

aienemi + c aijnjmi

=Cj (4-19)(akenem" + O• kl~nmd)- i(-9

k (cx.~' mw

where k now refers to ionic species only. At first glance it is not apparent

whether this expression allows for proportionality or not. Proportionality

would be possible if each Qi depends on the same species, and has the same

dependence on that species. The simplest such cases arc where that source

term depends linearly on n. for each species, which leads to the analytic

volume ionization cases in the next chapter. Such a source term may be

written as

V.yT = fini (4-20)
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where fi is a dimensionless ionization frequency defined as viL 2/Di . In

such a case, Equation 4-13 predicts the following relationship between n.

and •fi

ni = er (4-21)

fj

Indeed, the solutions presented in the next chapter give identical results.

Consider next a slightly more complicated system where the source

terms depend on more than one species, but depend on all species in the

same manner. An example would be a system where all ions had ioniza-

tion sources as described in Equation 4-20, and where charge transfer from

one species to another at a rate proportional to the charged particle number

density was present as well. The charge transfer case of the next chapter is

an example.

A typical plasma system, slightly more complicated than the last

example, would be one with volume ionization, depending linearly on n_,

and recombination, proportional to nine . Such a system would have the

following source term:

V =fin.-frnine (4-22)

Here, fi is the dimensionless ionization frequency for species i, and fi is the

dimensionless recombination rate for species i. For proportionality to hold,

all ion species must have this dependence, and furthermore, the ratio fl/fi

must be the same, regardless of species. We find this highly unlikely, and

in fact would not expect proportionality to hold in any such system.

External Ionization. In this case, we have the following form for the

continuity equations:
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V . SO=)(p) (4-23)

Then, the necessary condition for proportionality becomes

(4-24)
Sj

Here, the determination is straightforward. Again, we can rewrite this as

si = Ci sj =OQs (4-25)

where s = Ysj. This says that, for proportionality to be possible, the sources

themselves must be proportional. If they are, proportionality may indeed

occur, with Ki equal to Ci given by Equation 4-24. In the next chapter we

will find the general solution for the particular cases of planar and

cylindrical geometry with the sources proportional, and show that the

solutions are proportional also. Here, we have shown that at the least the

proportionality is possible as long as the sources are proportional, inde-

pendent of geometry.

External and Volume Ionization. We will consider a source term that

includes both the self and external ionization sources described before. The

resulting expression for the necessary condition is

ell = SiO) + Qi (4-26)
Ssj(p) + Qj

or

sj(p) + Q = C (S + P) (4-27)

where S and P are as defined previously. Again, we see that the source

terms for each species can differ only by a multiplicative constant, or

proportionality cannot hold. Such a condition is extremely unlikely to be
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met: even if proportionality holds for the s's and Q's individually, it is

unlikely that the ratio s/Q would be the same for all species.

Using Proportionality to Determine Solutions

Next, we wish to see how to use our results on proportionality to find

solutions. The rationale for the assumption of proportionality by previous

authors was to describe multi-ion ambipolar diffusion in cases that could

not be described otherwise (See, for example, Oskam) (Oskam, 1958:368).

For systems that involve electrons as the only negative species and ions all

at the same temperature, we can now state with certainty that it is no

longer necessary to make an a priori assumption of proportionality.

Instead, we can divide all such systems of interest into three areas.

1. For some systems, we can find analytic solutions without having
to assume proportionality. Examples of such systems include
external ionization where the spatial dependence of the ionization is
the same for all species, and simple volume ionization.

2. For some systems, we can show that the solutions are not propor-
tional. Examples of such systems are investigated in the Chapter VI
by means of numerical solutions.

3. For some systems, we can show that proportionality is possible,
and can then use that possibility to investigate possible analytic
solutions. The charge transfer case of the next chapter is an exam-
ple. There, we used Equation 4-13 for two purposes. First, we used it
to determine that proportionality was at least possible. Second, we
used it to determine the constraints on the possible proportional
solutions.

Multi-ion Ambipolar Diffusion Coefficient

We now have sufficient information to verify an often-used form of an

ambipolar diffusion coefficient for proportional systems (for example,
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Brown: 1966, 68). Substituting the momentum equation for electrons into

Equation 4-4, and with the approximation I >> y. we find:

Vn=K Vn= -9 (4-28)

The approximation is based on the common condition p. >> g. and will be

discussed in more detail in the next chapter as the "small-e-flux approxi-

mation."

We use Equation 4-11 to evaluate Yyj, producing

Vni= I -1 • (4-29)

Expressing this relationship in terms of the physical variables and rear-

ranging terms produces

I=- VNi• 1+4K) (4-30)

This is equivalent to defining an individual ion ambipolar diffusion

coefficient as

Doi D1+~T!&) (4-31)

From this expression and congruence (which holds for one-dimensional

proportional systems, among others), it is straightforward to show the

validity of the following definition of an ambipolar diffusion coefficient for

the electrons:

D,.=X K)D), (4-32)
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Note the implications of these expressions: first, for proportional systems

where the small-e-flux approximation holds (that is, where the electron

mobility is much higher than the ion mobility), ambipolar diffusion

coefficients can be defined for each ion species that depend on the free

diffusion coefficient for that species only, and second, the momentum

equation can be expressed as Fick's first law, for both ions and electrons.

Because of the lack of a usable model of multi-ion ambipolar diffusion,

previous usages of the diffusion coefficients defined in Equations 4-31 and

4-32 did not clearly state the limits of the definition. For instance, Brown

gives the equivalent of Equation 4-31 but never discusses that it applies only

for proportional systems, and only for cases where the electron mobility or

diffusion coefficient is much higher than the corresponding ion value. In

addition, although his definition of the electron ambipolar diffusion

coefficient correctly describes it in terms of weighted sums of the ion

coefficients, he is unable to provide values for NI/N. (Brown, 1966:67,68). As

a result, his expression is of limited utility compared with Equation 4-32,

which evaluates Ni/Ne explicitly.

Summary of Results

Consider a multidimensional "source space" consisting of all possible

source functions. Somewhere contained in that space is the subspace of

sources that produce proportional solutions. We now have algorithmic

methods for determining bounds for that subspace. In some cases we can

find the fluxes and determine that such cases are proportional. However,

even if we cannot find the fluxes we can often still make determinations of
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limits on that subspace from the behavior of the source terms. In particu-

lar, we can generally determine the limits without knowing any more than

the source terms themselves. This allows us to clearly determine that a

particular system or class of systems will not produce proportional

solutions, without needing to find the solutions first. To summarize our

results more precisely:

1. An necessary condition for proportionality, is

VnIK (4-33)

Vne

For any system for which the Schottky boundary conditions are a
reasonable choice, the condition is sufficient as well.

2. For those systems which contain electrons and positive ions only,
and for which the Schottky boundary conditions are a reasonable
choice, a sufficient condition f,,- proportionality is

v.Yi (4-34)

3. The only non-pathological cases where proportionality will occur
are either those where the only ionization source is an external
source, and that source is proportional, or where the only ionization
source is generalized volume ionization, with all terms having the
same dependence on the number densities.

4. In systems involving positive ions only, if an analytic solution
exists, either it can be found without assuming proportionality, or the
form of the source term can be used to show that proportionality is
allowed and what the constant of proportionality must be.

5. For proportional systems where the small-e-flux approximation is
appropriate, ambipolar diffusion coefficients can be defined that
allow formulation of the problem in terms of Fick's first law, with D
not a function of position:

F = -D VN (4-35)
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V. Analytic Solutions to the Model

Introduction

In this chapter we will discuss various analytic solutions of the model

developed in Chapter 3. We will emphasize several features of the model in

finding those solutions. First, we will demonstrate the advantages the

present model has in being able to obtain analytic solutions where other

models cannot. Second, we will show that those solutions are consistent

with our physical understanding of plasma discharges. Finally, we will

use the solutions to confirm the predictions about proportional discharges

that we made in Chapter IV.

We emphasize analytic solutions for several reasons:

1. They allow us to describe a wide variety of plasma conditions in a
single expression. This lets us see clearly the effect of changing the
parameters in the system.

2. They allow us to see the underlying physics of the system more
clearly.

3. They allow us to develop solutions more easily, using less time.
This allows us to rapidly examine a number of different physical
situations.

Definition of Cases of Interest. First, we will define the cases we wish to

examine. Those cases will be defined by variations in two regimes;

geometry and type of source. In addition, all the systems have certain

characteristics in common; none of them contain negative ions and they all

are systems where all the ions are at the same temperature.

Geometries. We will examine two different geometries. The first will

be planar geometry. Cases examined using this geometry will consist of
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one-dimensional systems, with a plane of symmetry at r = 0 . In such

systems, we need only examine one side of the system; we will choose

positive values of p . Therefore, we end up with a rectilinear coordinate

system, with the only variation being along the p axis, with the plasma

confined in the region -1 < p < 1 , and where we look only at the region

for p > 0 We shall call such systems "P" (for planar) systems.

The second geometry we will examine is cylindrical. We will examine

axi-symmetric systems, with no variation with z. The normalized coor-

dinate p corresponds to the radius from the axis of symmetry. The

plasma again consists of a one-dimensional system, confined to the region

0 < p < 1 . We shall call such systems "C" (for cylindrical) systems.

Sources. We will look at two possible ionization sources. One will be

external. The p dependence of the external source term is unrestricted,

however it is independent of any species densities:

V-7 = s(p) (5-1)

Although the normalized source function s depends on the diffusion

coefficient D as well as the actual source function S, our intent here is to

examine cases where the spatial dependence is caused by variations in S,

not D. Including spatially varying Ds would require additional terms in the

momentum equations. Such terms are not addressed here.

We will address very general external sources, includinm formally

solving the system in many cases. In particular, we will find analytic

5-2



closed-form solutions for uniform external ionization (designated as "X"),

and for a particular double-exponential source (designated as "E").

The other ionization source represents a generalized form of ionization

due to the charged species:

V.m Qk(ne,nj) (5-2)

Here, Qk represents a multivariate polynomial in the electron density n.,

the various ion densities nj , and (through the appropriate definition of the

coefficients of the terms in Qk) the neutral number density. Clearly, this

formalism can accommodate any dependence of the ionization rate on the

various particle densities. In addition, the formalism could be easily

extended to include dependencies on neutral species, such as excited

species, by adding them as addition variables in Qk , and including the

appropriate continuity and momentum equations.

Chapter IV used the full formalism in discussing proportionality. The

cases discussed here will be those where there is only a linear dependence

of the generalized ionization on n. Such cases are designated by "V",

identifying an ionization dependence on n. only, and "T" when charge

transfer is present as well. For brevity of discussion, such sources will be

referred to as volume ionization sources. Granted, this is not a completely

standardized definition. However, we know of no accepted term that can

refer to all possible particle density-dependent sources.

Boui.iary Conditions. The dependent variables in our system of

equations are the particle densities and fluxes. Each of these is determined

by a first order differential equation. Therefore, each needs a single boun-

dary condition. The boundary condition for the fluxes is determined by sym-
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metry, and by the fact that they are vector quantities. That boundary

condition is that these quantities must be identically zero at the center of the

system, where p = 0. There are a number of realistic boundary conditions

appropriate for the particle densities. The common choice of n(1) = 0 will be

used. To a very good approximation, this is the appropriate boundary

condition for a completely absorbing boundary (Cohen and Kruskal,

1963:921. Phelps, 1990:414). The choice of this boundary condition versus

more realistic ones amounts to displacing the boundary by a small amount

(See, for instance, Allis and Rose, 1954:84).

Small-e-Flux Approximation. We will provide a summary of all the

solutions momentarily. Before that, however, a discussion of the small-e-

flux approximation mentioned in Chapter IV would be appropriate. This

approximation states that the normalized electron flux is much smaller

than the total normalized ion flux. In addition, whenever the small-e-flux

approximation is valid, a similar approximation for the source terms will

be valid also. The term "small-e-flux approximation" will be used indis-

criminately (albeit somewhat simplistically), to refer to all of these approx-

imations. They can be stated as

<< 1

sjs, <<1 (5-3)

5j
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where s can refer either to a generalized source or a specific external

source function, and f refers to the dimensionless ionization frequency for

the V or T cases. Nowhere does the validity of the model developed in this

paper depend on these approximations. However, they are very well

justified, and they allow simplification of a number of expressions. This

allows us both to obtain a better understanding of the essential physics, and

also to more easily make a number of numerical order-of-magnitude

estimates.

We will not show the exact justification for all three assumptions. All

three are based on the fact that both the fluxes and the source terms are

normalized by factors of VD. Since D. is much greater than Di for any ion

(typically by several orders of magnitude), the normalized electron quanti-

ties are much smaller than their ion counterparts. We will examine the

flux case in detail.

Let us consider the justification of the first approximation:

<< (5-4)

The definition of the normalized flux produces

r. re
YO = Do < De (5-5)

j Dý j max

which simplifies to

max
ye i (5-6)

< -De ri
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But, congruence implies

A -=1 (5-7)
~rj

J

(In fact, since we only need Equation 5-6 to hold for the magnitudes of the

fluxes, strict congruence is not even necessary. Quasi-neutrality is

sufficient to justify the relationship.)

Hence,

maxIDj
D< (5-8)S~D.

J

For typical plasmas, Di is on the order of 100 cm 2 s -1 or less, while D. is

in excess of 10s cm2 s-1 (von Engel, 1965: 140, 141). . As a result, in almost

all cases D. >> Di . Therefore, we see that

max A-
ye << 1 (5-9)•.• D.

which proves Equation 5-4. Exactly similar arguments are used to justify

the other two assumptions in Equation 5-3. The only difference is that

charge conservation ensures that the relationship analogous to Equation

5-7 will hold true, instead of congruence.

Note that Equation 5-9 is based on the electron diffusion coefficient being

much higher than the ion diffusion coefficient, or equivalently, the electron

mobility being much higher than the ion mobility. Therefore, the small-e-

flux approximation is equivalent to assuming that the electrons are much

more mobile than the ions. It is not equivalent to assuming that the ion
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temperature is zero, or that the ions are immobile. On the other hand, D is

proportional to T. Therefore, assuming that the ion temperature is zero is

trivially implies D. >> DA.

The small-e-flux approximation is often invoked, although not as

explicitly as in this document. For instance, Tonks and Langmuir assume

the Boltzmann relation for the electrons and electric potential (Tonks and

Langmuir, 1929:883). As was pointed out at the end of Chapter III, the

Boltzmann relation correctly describes an ambipolar plasma only when the

small-e-flux approximation is valid. Therefore, Tonks and Langmuir's

work relies on this approximation.

Summary of Solutions

Before we go into a detailed explication of the solution methods and the

resulting solutions, it would be helpful to present a summary of the solu-

tions themselves. Note that they are in the simplified form that results

from the use of the small-e-flux assumption. In this summary, we do not

present the moment or continuity equations appropriate to the solutions.

Rather, we save those for the complete development of the solutions, later in

the chapter.

We will now describe each of the solution sets, starting with the external

ionization cases and then continuing to the self ionization cases.

External Ionization. In these cases we assume that the only source of

ionization is an external ionization, imposed by some mechanism outside

the plasma. This ionization is completely independent of any phenomena

occurring inside the plasma.
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PX. First, we have the PX case; planar geometry, uniform external

ionization only-

S+e)

1-p2

(5-10)
Y= sp

2p

(1 - p2)e

PE. The PE case combines planar symmetry with external ionization

decaying exponentially from each boundary. Examples where this might

arise include a time-averaged description of planar RF reactors, where in

the so-called y regime secondary emission produces beams of high-energy

electrons from each electrode (e.g. Godyak and Khanneh, 1986), )r cases

where photo-ionization from each side provides the ionization source. (We

note that, to model the RF reactor with complete fidelity, we would have to

account for the presence of the high-energy electrons in satisfying quasi-

neutrality near the boundary, where n. is small. However, for the present

case we will assume that the secondary electron emission coefficient is

small enough, and the beam electron velocity high enough, that the particle

density due to the high energy electrons can be neglected.) For this case, we

find the following solutions for the small-e-flux approximation:
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E sj
J

nz - (cosh A - cosh Ap)
AA1+0)

nr = - --- (cosh A - cosh Ap)
A• sj41+E)

(5-10)

y= sinh Ap
A

E=A sinh Ap

(cosh A - cosh Ap)

CX. Finally, we have the CX case, which combines cylindrical

geometry with external ionization:

ne=4(1+e)re Sl-p 2

(5-11)
sp

2p

(1 -p2 )e

Volume Ionization. In these cases, the ionization source for both

species is single-step impact ionization by the electrons in the plasma. We

assume that the ionization frequency is constant throughout the plasma.

The solutions below would have the same form, with or without the

small-e-flux approximation being applied to the dimensionless frequencies

f. The various fs only appear in the definition of the eigencondition that is

produced in all these solutions. The approximation produces slight

changes in the values of the various F's, but does not otherwise change the
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eigencondition. As a result, we see no change in the structure of the

solutions.

PV. The PV case involves planar symmetry, with volume ionization:

r4 = nocosl1P
2

N _1_nOcosz-p
= j 2

(5-12)
7= fno sinzp

2P

E= 2 -tax&~
i=(1 + e) 2

CV. We refer to the cylindrical geometry, volume ionization case as

"CV":

n. =no Jo(lp)

ZfJ
j=i & JO(Xop)

fj

where •) is the first zero of the Bessel function J0

PT. Finally, we have the PT case, with self ionization and charge

transfer. In this system, species 1 gains by charge transfer from species 2,

plus all species have ionization sources proportional to li.. Formally, the
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solutions are similar to the PS case, except with a different definition of X

and a slight difference for the nj's:

n. = nocos

= 2ni = Kjnocos 2p
2 (5-14)

Y= fno sin21p

E fij tanA-P
~r. 2

We will point out the difference in X and describe "Kj" when we discuss

this solution in more detail, later.

Exact Solutions

Next, we will develop the complete solutions, starting with the formal-

ism for arbitrary external or volume sources, and continuing to exact

solutions for a number of cases. We will also describe the implications of

the solutions, as each solution is discussed. We will start with the external

source cases, and then continue with the volume sources.

External Sources. We will examine arbitrary external source functions,

in both planar and cylindrical geometry. We will first obtain a general

form for the solutions, then examine sources that are proportional (in the

same sense that Oskam defined particle densities as being proportional),

and finally solve the system for particular external sources.

Planar Geometry. Consider the continuity equation in planar

geometry, for an arbitrary external source term:
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= s(p) (5-15)ap

Here, the lack of subscripts implies that this equation is valid for any

species.

Immediately, we see that the solution for the particle flux densities is

given by P
f = s(p')dp' (5-16)

When we use this expression in the electron momentum equation, we

obtain the following form for the electron number density:

P,J ~SO~") + s.(P'jdP"i

n. = 1+C p (5-17)

The formal integral expression for ni then becomes:

5-12



ni fJ si(p")dp"

~1 (5-18)

Xex(I sj(p'") - se(P'.)).p"' dp

X exp f--dop d p'

f f o (EY, s,(p .... )+ 8s6(p ...) p .... d p .. "

p

In general, this form is not integrable. However, let us consider sources of

the following form:

sk(p) = Skg(p) (5-19)

That is, we will consider proportional sources. This is a fairly reasonable

restriction. For instance, consider a situation where the background gas

mixture is homogeneous, and an same external source of high energy

electrons is providing the ionization for all species. If the electron energy is

high enough so that differences in ionization potential can be ignored, then

the ionization rate is a function of total beam intensity. In such a case

conditions such as Equation 5-19 would be true. That produces the follow-

ing form for n.:

ryX sj+s.
n. = +e g(p")dp"dp' (5-20)
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This solution can then be used to obtain the following solution for ni (see

Appendix B for details):

si j j' g(p")dp"dp' (5-21)

yi Esj 1+E

We will not present the expression for E at this time. It is too complex to

be worthwhile for such a general case. Instead, we will wait until we

examine specific cases. However, note thrt the general definition of E in

terms of n. and y still applies.

PX Case. As an example of a particular proportional external

source, we shall first use a uniform external source, with

sk(p)= 8k (5-22)

This is the case referred to earlier as "PX". This source produces the

following solutions for the fluxes:

Yk = SkP (5-23)

For ne, the result is

ey, sj + s.

_ = (1 -p2) (5-24)
=21+f)

And for ni,

E•sj+s.

nj si 41-p2) =-% (5-25)
2= sji2 +E) Isj

J J

5-14



From these, we obtain the following expression for the normalized electric

field:

E (12p Uý Ijs)(-6
[ _ 1p 2)(EX si+s.)

The small-e-flux approximation produces the following forms for the

solutions ( y is unchanged):

n.=21+E)F- s

n2 = r(5-27)

E= 2p
4(1-p 2)

Let us consider some of the implications of these solutions. For conve-

nience, we first examine situations where the small-e-flux approximation

is valid.

First, consider the particle fluxes. The plasma has no volume losses.

Therefore, the fluxes depend only on the external source. Since the

external source is not linked to the species densities, the fluxes are also

independent of these densities. For this system, with the fluxes all zero and

therefore equal at the axis, congruence holds despite any changes in the

plasma conditions. This result is the same for the physical fluxes or the

non-dimensional fluxes.

Next, consider the expression for the physical field, E:
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E= k-- (x Do (5-28)
(d2.x2) q (d2.x2)P.

The electric field depends only on T., not on Ti or the source terms. This

should not be totally surprising, and in fact is identical to the results

obtained from a single-ion ambipolar model. From the results on the multi-

ion diffusion coefficient presented in Chapter IV, or from similar results

from Schottky's definition of Da, it follows that the field increases the field-

free ion flux by a factor of D./Di = (1+TI'ri). At the same time it reduces the

field-free electron flux by a factor of approximately DW/Da. Even though D.

is larger than Di, De is so much larger still that the field-induced change in

the ion flux is still much smaller than that of the electron flux. The field

serves to constrain the electron flux to match the ion fluxes, but has little

effect on the ions, at least in those regimes where the small-e-flux approx-

imation holds. See, for example, Phelps, who discusses the fact that the

electron diffusive and field-induced fluxes balance each other (Phelps,

1990:412). This implies that the field produced is determined by the electron

properties, not the ion properties. The field necessary to constrain the

electrons depends on the ratio of g.., which determines how well the

electrons respond to the field, to D., which determines how well the

electrons respond to diffusive forces. But that ratio is q/kT., and is deter-

mined solely by the electron temperature.

Finally, consider the particle densities. The field is proportional to Te

and the fluxes are independent of the plasma characteristics. VN can be

expressed as approximately N/A , where A is the scale length of the dis-

charge. Recall the momentum equation with the electric field still includ-
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ed: r = -DVN#LNE . With a fixed r, if the field goes up, VN and N must go

down. This implies that N varies as some increasing function of 1iTr .

Measuring T. in units of Ti produces N varying as E , consistent with

Equation 5-27.

In addition, N depends on s which is equivalent to the ratio S/D. This is

not surprising; number density should increase as the source strength

increases. Furthermore, increased values for D imply higher diffusion

losses. Therefore, N should decrease as D increases.

These results are exactly equivalent to the results from the single

species theory of Schottky, as applied to this system, with the exception that

Schottky's theory, which deals with only a single species, cannot address

the relative magnitude of two species. In addition, they are the same that

would result from applying Oskam's model to this physical situation. Note

the significant difference, however; Oskam had to assume proportionality

to find any solutions. We found the solutions, and then showed that they

were proportional.

Changes occur when the small-e-flux approximation is not invoked.

There are no significant differences for y or n. However, there is a signifi-

cant difference in the electric field. Consider the full expression for E:

E= 2 kT1 jt De (5-29)
(d2 -x2) q eX. +Se (

j De

Expanding the last terms in the right hand side and dropping terms second

order and higher in Se/D. produces

5-17



E= 2x M11.e Do(5-30)d2 - X2) q1

Although there is a change in the form of E, it is small. The second term is

of the form 1-8, where 8 is dominated by the ratio Dj/De. This ratio is

typically so small that 8 << 1. As a result, the additional dependence on Ti,

the sources, and the diffusion coefficients is only a perturbation to the

expression seen in the small-e-flux case. This higher order effect is due

primarily to the fact that the we are now taking into account the ions'

response to the field. With the small-e-flux approximation, we neglect that

response. In most practical cases, this higher order effect is insignificant.

As will be shown in the next chapter, Dj/D. is typically of the order of 10 - or

smaller, and the second and higher order terms can be ignored.

PE Case. As another example, consider a case where the external

source of ionization is introduced from both sides of the plasma. This

might arise with photo-ionization from sources on each side of a planar

discharge. It could also arise in a transverse e-beam pumped discharge

using dual opposed e-beams. Another example would be a y-regime RF

discharge. The electrons, produced by ion secondary emission at each

electrode, are accelerated in the large sheaths generated. In some pres-

sure regimes, the ionization produced by these electrons become the major

ionization source for the discharge (Godyak and Khanneh, 1986).

The resulting source function is the sum of two exponential decays, and

can be described as
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aw = 8kcosBh(Ap) (5-31)ap

where VA represents a dimensionless decay length and is the same for

every species. The k subscript explicitly denotes any species, to distin-

guish the species-dependent quantities y and s from the species-

independent quantity A. That definition produces

= %kinh(Ap)
A

'E sj+s.

ii = .. L..cosh(A) - cosh(Ap))Ab(+E)

1s+s. (5-32)

=, j- I cosh(A)cosh(Ap))
iA2(1+e)j sj

sj

Xsa-s.)s inh(Ap)

(e2 sj+s.)cosh(A)-cosh(Ap))

The small-e-flux approximation implies
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=I | inl|Ap)
A

exJ

ne = (cogh(A) - cosh(Ap))

ni= 2z..cosh(A) - cosNAp)) (5-33)
A2(1+e)

sj

Asinh(Ap)

~4cosA)-cosh(Ap))

Except for the different dependence of the source term on p (which leads

both to the presence of the A and A2 terms, and to the cosh and sinh depen-

dencies), these solutions are equivalent to the PX case. Therefore, the same

discussion of consequences of the solutions applies.

These results can be compared to Godyak and Khanneh's work directly

(Godyak and Khanneh, 1986). These authors are examining an RF plasma

reactor in the regime where ionization by the secondary electrons emitted

from the electrode at each end of the discharge are a significant portion of

the total ionization of the system. They derive an ionization function for the

beam electrons that is identical in form to Equation 5-31, and also include

volume ionization by the electrons in the plasma, all for a single ion

species. They address both the radial and longitudinal diffusion. Their

solutions for the longitudinal diffusion, in the case where the volume
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ionization is negligible compared to the beam ionization, have exactly the

same form as the single-ion version of Equation 5-33.

Cylindrical Geometry Now, let us repeat the analysis of external

sources for a cylindrical geometry. Again, the source term depends only on

position. However, the cylindrical geometry introduces some changes. In

that geometry, the continuity equations become

= + (5-34)
P ap

The solution for the fluxes is

Y)p ' (5-35)

This differs from the planar case by a factor of ip before the integral and a

factor of p' inside the integral. This produces the following form for nr:

P ,,
n . Pj f p'e sip ")+ sp ")Idp"dp" (5-36)n=(I+E) f p ' j

1

Again, these formal solutions produce the formal solution for ni:
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JP

0fl

p•P"

However, assuming proportional sources produces

SkaP) = sk(P) (5-38)

The results are the following forms for the particle fluxes:

p,, Sj+s. p
1  p'gep")dp"dp' (5-39)

Another algebraic manipulation, essentially equivalent to that described in

Appendix B, produces the following form for rie:
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nj~P -f gp")dp"dp'
sje i+s.) (P

(540)

sj

The exact form for the electric field is readily obtainable, but again it does

not seem worthwhile to present it in such a general case. Instead, we will

look at the field in the example presented next.

CX Case. Consider the specific example of uniform external

ionization. This leads to the following form for the particle fluxes:

2(5-41)

Notice that this differs from the PX case only by a factor of two in the

denominator. The momentum equations have exactly the same form as for

the PX case. Therefore, the factor of two difference in the fluxes carries

throughout to produce

EX"I Sj+se

n.= 4-p2)
4(1+E)

EY, s.. s.

N J = Si 1-p2) (542)
=4 ( sJ1+s)

(1-p2)(EX si+s.)

The small-e-flux assumptions gives
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n. -. 1-p2)

ni= si f~1-p2)
(5-43)

2

E= 2p
4(1-p 2)

Once more, the conclusions of the PX case apply here.

General Self-Ionization Sources. Next are three cases where the only

ionization term is self ionization. We will first approach the solution using

a very general formulation. This general formulation will help determine

the bounds of practical application of the analytic method. The less general

examples that follow still produce results of broad utility.

First, assume a source term as follows:

V "jk = Qk(nr,ni) (5-44)

Here, the "k" subscripts refer to either electrons or ions. Q is a general

polynomial in its arguments n. and ni, in the sense that it can include not

only powers of those arguments, but products of those powers as well. For

example, ordinary electron impact ionization produces a source term that

depends linearly on n. , but depends on no other species. On the other

hand, recombination adds a source term (that is actually negative, and

therefore a loss term) that depends on the product of the electron density

and the appropriate ion density-

V -j = fin. - frneni (5-45)
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Here, the first term on the right hand side represents electron impact

ionization, and the second represents recombination.

The formulation using Qk is sufficient to cover every case of interest

where the ionization rate depends only on the number densities of the

charged species. This formulation was used in Chapter IV in the discus-

sion of proportionality, and will be used it in Chapter VI in the discussion

of numerical solutions. Unfortunately, sources of this form, other than the

very simplest, do not lend themselves to analytic solutions. Therefore, for

the present we shall consider only electron impact ionization, and will look

only at loss terms that are also proportional to n..

Planar Geometry.

PV Case. In planar geometry, and with electron ion imoact

ionization as the only source, the continuity equation is

'file (5-46)ap

Here, f is a normalized ionization frequency given by f = vd 2/D , where d is

the half-width of the discharge.

The momentum equation for electrons is

an. = _J _(5-47)

oap 1+E

Taking the divergence of this equation, and substituting the expressions for

d "/yap from the continuity equations, produces

-e, (5-48)
ap2 1+5 .
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Defining

X2 ----j (549)

Produces the following expression for n.:

p2

This has, as its most general solution,

n. = a cos Xp + b sinXp (5-51)

where the values of tF e a and b are chosen to meet the boundary conditions.

With an exact form for n., y is given by

Y= f(&sinXp + -hcosXp) (5-52)

The boundary condition y(O) = 0 implies that the coefficient b must be

zero. That value plus the condition that n(1) = 0 implies that either a is

zero, or cosX is zero. But, to this point X is determined by the properties of

the plasma, not the solutions to the differential equation. Therefore, in the

general case cosX is not zero. Thus, b is zero, and the only solutions is the

trivial solution.

The answer to this -pparent dilemma is that the value of X is not really

independent of the differential equations. The requirement for physically

meaningful solutions forces n. to have a non-zero value somewhere.

Assume that the non-zero value occurs at n.(O) = 1. For M separate ion

species, the M+1 continuity and M+1 momentum equations form a system
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of 2M+2 first order differential equations. Each of the M+1 fluxes has a

boundary condition of y(O) = 0 . Similarly, each of the M+1 number

densities has a boundary condition n(1) = 0. Finally, the assumption above

provides one addition boundary condition. The result is a system of 2M+2

first order differential equations with 2M+3 boundary conditions. This over-

constrained system constitutes an eigenvalue problem that has solutions

only for particular values of the parameters.

From a mathematical standpoint, any non-zero value at any position

other than p = 1 would suffice. From a physical standpoint, of course, the

value for n.(O) represents the on-axis electron number density and is

determined by the interaction of the longitudinal electric field and the

external circuit parameters. The existence of the eigencondition enforces a

particular value for the ionization frequency, and hence for the eiectron

temperature. On the other hand, the external circuit parameters enforce a

particular value for the longitudinal current. To accommodate both of

these enforced values, n,(O) will change until the longitudinal flux, given by

n4LE, is appropriate for the total longitudinal current. For the particular

case at hand, the value is truly arbitrary, but must be positive.

A number of different but related quantities could be chosen as the

eigenvalue. Because of its explicit appearance in the differential equations,

we chose to use the electron temperature, kTe . All the ionization frequen-

cies depend on the electron energy distribution, and X depends on the

ionization frequencies. For Maxwellian distributions, the distribution is

characterized by the electron temperature kT. . Therefore, adjusting the
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value of kT. allows non-trivial solutions. Equivalent operations could be

performed for more complicated electron energy distributions, but without

the simplicity of a single parameter.

In general, there are a number of allowable values for X ; 7U2, 3,rJ2, and

so forth. Expressing the solution as a sum over all the possible values of X

produces what amounts to a Fourier expansion of the solutions, with each

value of X representing a different diffusion mode. This analysis examines

only the simplest mode, the so-called fundamental diffusion mode. For that

mode, the boundary conditions force the following value for X:

A =(5-53)
2

This produces the following expression for n.:

n. = neocos2p (5-54)

= 2

Here, n.o had the value of 1 in the example above.

In fact, this eigencondition determines the electron temperature in

plasmas that depend on self-ionization. We will return to this point later,

while examining numerical solutions. At that time, we will show that the

present model gives results that are consistent with Schottky's model of

single ion ambipolar diffusion.

Various authors have treated the eigenvalue nature of this system. For

a good review, see Ferreira (Ferreira et alia, 1988). Note, however, that

Ferreira claims his system must have two eigenvalues. One of Ferreira's

eigenvalues is indeed forced by the physics of the situation, and is in fact the

same as we use here. However, the other is a consequence of Ferreira's
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normalization. Ferreira uses the electron number density no as one of his

two dependent variables. For the other, he uses a , defined as the ratio of

the negative ion density n, to n.. He then normalizes the electron density,

defining g. = n./n.o . He also normalizes his ion density ratio by defining

g. = a/ao. In both cases, he is dividing by the on-axis value of the variable,

thus setting the value of the normalized variable on axis to 1. The result is

the following normalized system of differential equations:

• d{XX(l+aog.}d) + Xge=0
(5-55)

o --
Xag je- - X(P-QaXog.) = 0

This is a system of two 2nd-order ordinary differential equations, which

would ordinarily require four boundary conditions. In this regard it is

equivalent to the system of two continuity and two momentum equations

that we are using. In addition, the normalization conditions force two

additional boundary conditions: ga(O) = g.(0) = 1 . The condition on g. is

exactly equivalent to the eigencondition used here. The condition on &, is a

consequence of the normalization of g. . Note that g, never appears in the

system separate from ao . The combination could be replaced with the

single function a(X) with no change to the same system. The only differ-

ence would be the loss of the boundary condition on a. This would remove

Ferreira's second boundary condition.

This does not imply that the condition forced by the normalization is not

a consequence of the physics of the situation. Rather, Ferreira's normal-

ization changes the on-axis ion density from a consequence of the solutions
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into a requirement for solutions to exist. The present choice of boundary

conditions and normalizations allows the value of the on-axis densities to

appear as a natural consequence of the system.

The eigencondition on X. quickly produces an expression for y for the

electrons and each of the ions:

7= fii.Ain2p (5-56)
i9 2

For the ions, the momentum equation produces the following solution for

the fundamental mode:

ni no COSl-p (5-57)
Ef 2

The electric field is given by

E=2 J tans(5-58)
X 1+C 2

Notice that we still have not determined ft. However, the original

definition of X and the requirement that X = PJ2 together imply

= (5-59)
(2) 1 e

This single constraint is not sufficient to determine each fj ; it only con-

cerns the sum of the frequencies, not each individual one. Other expres-

sions must be found to relate the individual frequencies to each other. In a

real discharge, those expressions involve the ionization potential and cross-

section for each species. Given the form of the electron energy distribution,

the potential and cross-section are sufficient to uniquely determine the
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ionization frequency associated with a particular electron temperature.

This approach is exercised in Chapter VI when examining the tempera-

ture dependence of a Ne/He plasma. Presently, we will make some simple

assumptions that will allow us to continue, while still modeling fairly

realistic situations.

First, we will assume

V 1 = V2 = V3 = V4 =... (5-60)

for all ionic species.

Second, we make the small-e-flux approximation. Doing so allows

simplification of the form of the eigencondition. The error this introduces

in the final solution is negligible; because of the vastly different ion and

electron mobilities, the small-e-flux approximation is valid for any system

with kT. a kTi. It does not change the form of the particle or fluxes at all.

In fact, the only expressions that change are those for the normalized field

and for X, which become

~E4~~~an1L
.1+E 2

(5-61)

1+E

Using the relationship in Equation 5-60 and the definition of the dimen-

sionless sources to determine the relationship of the various fi's, substitut-

ing that relationship into the second half of Equation 5-61, and solving for fi

produces
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f = 2 (5-62)

We can then use conservation of charge, which implies that v. is equal to

Zvi to determine f:

4= De (5-63)

We then use the values for f1 and f. to evaluate the solutions.

These results are analogous to the results Schottky's theory produces for

the equivalent single-ion case. In fact, Equations 5-54 and 5-56 are identical

to the dimensionless form of the Schottky solutions for a single ion plasma.

Furthermore, Equation 5-57 is identical to Schottky's result for the ions,

except for the normalizing factor njI/nj , which reduces to the value

identically 1 for the single ion case. The eigencondition expressed in

Equation 549 becomes in the single ion case

(Zr= V Pe 4 (5-64)
2d (p*D+ + p.+De)

which is identical to Schottky's result. The electric fields in the two models

are equivalent; in the single-ion case Equation 5-58 gives Schottky's results

identically.

PT Case. As the last example of analytic solutions for planar

systems, it would be illuminating to examine a system where this model's

ability to predict the possibility of proportionality is useful in finding

solutions. We will do so in the context of finding solutions for systems

involving nonresonant charge transfer. Consider a generic two-ion system,
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with volume source terms for each species, and nonresonant charge

transfer only from species 2 to species 1:

V "y- f n + ft, n2

V = f2 n-f4 2 n2 (5-65)

V Yj.=fo no

where fti = vtd2/Di , and vt is the non-resonant charge transfer frequency.

(Note vt is not the resonant charge transfer frequency that has such a

strong effect on the total collision frequency of ions in their parent gases.)

This gives the following relationship:

ft2 = -I ft1 (5-66)

We see immediately that this system is considerably more complicated

than those we have considered earlier. At first glance, it appears that the

complexity of this system precludes the methods used in the PV case to

produce analytic solution. For that case we were able to take the divergence

of the electron momentum equation to produce a diffusion equation that

depended only on n.. Here, the diffusion equation depends on the ion

densities as well. However, let us examine the validity of the assumption of

proportionality in this case:

ni = K, l (5-67)

n 2 =K 2 n.

As stated in Equation 5-67, proportionality is valid if K, and K2 are con-

stants, independent of position. We will determine if such is the case.

Equation 5-67 implies the following equation for n.:
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_ = [ýfi + ftl K2 + f2 - f•K2) + f.] n. (-S8)

CIp2 1+e

Next, it follows that k is given by-.

X2 = [Of, + ft, K2 + f2 ft2 K2) + fe (&-69)1+e

The constraint on X is unchanged:

X= IL (5-70)

2

We also have constraints on K1 and K2. In particular their definition

implies

K1 + K2 = 1 (5-71)

Furthermore, the conditions on proportionality developed in Chapter IV

ensure that KI and K2 , as proportionality constants, must satisfy the

following relationship:

V.; (5-72)

J

We use the continuity equations to evaluate the source terms in Equation

5-72 in terms of KI, K2 , fl, f2, fti, and ft2 Solving the algebraic system

consisting of Equations 5-71 and 5-72 produces find the following value for

K2:

K2f(f1+f2+ +ft2 (f1 +f2 +ft2 P +4f2(ftl-ft2) (5-73)

2(fti-ft2)

And for K1:

K1 = 1-K2 (5-74)
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The ratio ni/n. a Ki for each species, as given by Equations 5-73 and 5-74,

is independent of position. The conclusion is that the assumption of

proportionality is valid. This implies solutions for the particle densities and

fluxes that formally are the same as the PV case:

y=fnieo sinllp
i~ 2

n. = neo cos2p (5-75)

ni = K neo cos2_p

2

Note that we were able to show that proportional solutions existed prior

to determining those solutions. This is the significant difference between

this model and Schottky-based models, which must use proportionality to

find solutions without any indications of whether the solutions produced

satisfy the assumption necessary to produce them.

Unfortunately, analysis of these solutions (beyond the characteristics

that all the volume ionization cases share) depends very strongly on the

specifics of the relative magnitude of the four frequencies, f, , f2 , ft , and

ft2 At the moment, we are more concerned with the implications that

existence of the solutions has on proportionality than we are in discussing

extremely case-specific results. Therefore, we will forego further discus-

sion of these expressions.

Cylindrical Geometry. Finally, we will address volume sources in

cylindrical geometry, using a single example.

CV Case. The cylindrical self-ionization case formally is almost

identical to the planar case, with the substitution for Bessel functions for

trigonometric functions, and with the replacement of x/2 with o, the first
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zero of Jo. That being the case, we will forego the details of the derivation,

and present the solutions for the fundamental mode:

n = neo Jo (Xop)
4= AL n~oJo(Xkop)

fii

y = J, (XP) (5-76)

Eg 77 ,J -') J, (;Lp)

X (1+•)Jo (XOp)

F Ifj+ f.
S1+F-

As mentioned above in the PS case, the small-e-flux approximation

produces a new expression for E, and Xo but no other changes in the

solutions:

YA
E= jJ, J1(;op)

X (1+-)Jo (Lop)
(5-77)

2 i
1+F-

As before, we must determine the ionization frequencies. Making the

same approximations as before results lan
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2ffi X5

(5-78)

Do

Summary

This chapter examined the analytic solutions of systems containing

external or volume source terms. We were able to develop general solution

forms for arbitrary source terms, and show that these forms could be used

to find analytic, closed form solutions for sources that were proportional but

otherwise fairly general.

We actually developed solutions for two different external sources, in two

different geometries. One source described idealized systems involving

completely uniform ionization in either planar or cylindrical geometries.

The other source modeled a spatially varying source of ionization typical of

that produce by externally introduced fluxes of particles.

We also developed solutions for various systems involving volume source

terms, including one where the volume term included both a source

proportional to the electron density, and charge transfer. We used this

latter case to highlight the difference between previous analytic models that

assumed proportionality in the hopes of finding solutions, and the present

model which predicted the possible existence of proportionality and then

used knowledge about the constraints on proportional solutions to find those

solutions.
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VI. Numerical Solutions to the Model

Introduction

Rationale. The analytic results from the new ambipolar model have

given insight into charged particle diffusion phenomena. However, there

are a number of physical situations which can only be addressed by

numerical methods. Typically, such situations involve kinetic processes

such as such as recombination, non-resonant charge transfer, or other

source or loss terms of higher nonlinearity than the simple processes we

investigated in Chapter V. In particular, we will use numerical methods

to investigate nonproportional plasmas whose net sources and losses have

varying spatial dependence, or whose net sources and losses do not all

depend the same way on charged particle number density. Such sources

and losses invalidate the proportional solutions of Chapter V. In addition,

we will investigate systems where numerical methods are necessary to

determine the electron temperature, even though the fluxes and densities

can be found analytically.

We conduct these investigations with two purposes in mind:

1. We wish to compare the new model to previous results of other
authors. We do this to demonstrate that the model is suitable to
describe such systems. We compare to theoretical results of
Wunderer, of Young, and of von Engel, and to experimental results
of Labuda and Gordon, and of Schmidt. (Wunderer, 1978; Young,
1965; von Engel, 1965; Labuda and Gordon, 1964; Schmidt, 1965)

2. We wish to discover new physical relationships from the solutions,
such as variation of the electric field with nonlinear source terms,
onset of nonproportionality, spatially increasing or decreasing
particle densities, and dominance of the discharge by a single ion.
Such relationships are easier to discover if the physics is as simple as
possible. For this reason, most of the systems examined for this
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purpose will be simplified, to allow concentration on the physics

revealed.

Cases To Be Examined. The cases to be examined can be categorized

by two different source terms: external sources of ionization and volume

sources. All systems used cylindrical geometry, as in the CX and CV cases

of Chapter V. In Equation 6-1 we show the form of the diffusion and

continuity equations appropriate for all the cases examined, as well as the

definition of the ambipolar electric field.

kT.Z r
aNi r-_N- ____

ar Dý N. (kTo + kTi)

kTiZ
_N_ jD

ar kTe + kTi

ar r
(6-1)

ar r

are,=,r
ar r

e NjkTe + kTi)

Here, S1 , S2 and S. refer to the most general form of the source terms,

including external ionization and volume terms proportional to arbitrary

powers of the number densities. As we discuss each individual system, we

will repeat the system above with the specific source/loss terms entered for

the particular system being considered. Note that we are using the small-e-
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flux approximation. In addition, we use the actual physical quantities

themselves, not the dimensionless version. Many of the arguments for

using non-dimensionalized functions pertain to the abiiity to more easily

investigate the features of analytic solutions. For numeric solutions, the

connection between the input parameters and the final solutions is not as

clear. As a result, these arguments are not as strong for numeric solu-

tions as they are for analytic solutions. Furthermore, the use of physical

solutions for this particular system of equations allowed for slightly

increased numerical stability. The reasons for this increased stability are

not perfectly clear, as stability analysis of a numerical system this complex

is extremely complicated.

Measure of Nonproportionality. One of the phenomena we wish to

investigate is nonproportionality. We are interested in determining how far

a particular solution deviates from a proportional solution and what are the

implications of the deviation. Such a determination is possible only if we

have a metric for nonproportionality.

A usable measure should have the following characteristics:

1. It should measure deviation in some fashion from proportional
solutions. From Chapter rV, we saw that nonproportionality is
determined by the form of the source. If we have proportional
sources (as we defined them in Chapters IV and V), we find propor-
tional solutions. As we add nonproportional sources, we deviate
from proportional solutions. It is these deviations that we wish to
measure.

2. A value of 1.0 for solutions that match the Schottky solutions is
convenient for comparison from one discharge to another.

3. It should be experimentally useful. One possibility would be that
the quantities involved are experimentally accessible. This allows for
easier and more accurate comparison to experiment. Another
possibility would be a measure that allows comparison of experimen-
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tal values to analytic predictions. This allows for determination of
the validity of correlation between experiment and theory.

4. The measure should be general enough to address a wide variety
of physical systems.

One complication is the uncertain usage of the term "Schottky solu-

tions'. In this research, "Schottky Solutions" is used to refer to those

solutions produced by Schottky's ambipolar model when the only kinetic

processes are volume ionization by plasma electrons, given by Si = viNe

Such processes give trigonometric solutions for planar geometry, and

Bessel functions for cylindrical geometry. Other systems may give propor-

tional solutions, but these will not be referred to as Schottky solutions.

There are a number of possible measures. None of them completely

meet all the requirements above. In particular, it is difficult to meet the

first three requirements and maintain complete generality. We chose to

use a perfectly general measure, and accept the limitations that result. We

define our chosen measure as

(6-2)

In this expression, the "i" subscript refers to the ion species. Si is used

as a measure of the source term that would give rise to proportional

solutions, evaluated on axis. For example, for uniform external ionization,

it would be the external source term. For volume sources, it would be the

ionization frequency. r is the particle flux, evaluated at the wall. Si can be

considered a measure the behavior that would exist if the nonproportional
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process were absent, while r is a measure of the behavior that exists with

the nonproportional process present. As an example, if the discharge

involved volume ionization plus recombination, J would be given by the

expression P3 = (vi/v.eX/l•I.) , with each F evaluated with the effects of

recombination included.

This is not a perfect measure of nonproportionality. For instance, it only

uses values on-axis and at the edge of the discharge. It can also give

misleading results for systems where one ion dominates the discharge. In

such cases, P3 can seem to indicate proportionality for the dominant ion,

when in fact the discharge as a whole is highly nonproportional. However,

its generality and its independence of system-specific effects makes it a

worthwhile parameter.

The measure chosen meets our criteria. First, proportional solutions

predict a particular relationship between the on-axis source terms and the

wall fluxes, which determines 1 . As the solutions move away from

proportionality, that relationship, and 1 , changes. Second, it does have a

value of 1.0 for Schottky solutions. Third, it is experimentally accessible.

For instance, a value of 1 = 2.0 means that the proportional source terms

are twice what the ion fluxes at the wall would predict them to be. As a

result, using a proportional model to determine the on-axis ionization from

the wall fluxes would also be in error by that same factor of 2.

There are other measures we could use. One would be to calculate the

integral of (Ni(r)/N*(r) - Ni(0)N.(0)) 2, as r goes from 0 to R. For a propor-
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tional discharge, this would be exactly zero for each species. However, it

would be very difficult to compare this measurement to experiment.

Furthermore, it does not relate to any of the external or internal parame-

ters of the discharge, which restricts its utility. It would also be difficult to

devise a scale for this measurement; that is, is a value of 2.0 nearly propor-

tional or very nonproportional?

Because of the difficulties that arise with other measures, we choose to

use 0 , knowing full well that for different situations there may be other

choices.

External Ionization. Three systems will be examined that use

external ionization sources. The first is investigated in the verification of

the model. The other two are addressed in the last part of the chapter,

when we use generic plasmas to investigate the effect of recombination and

charge transfer in nonproportional discharges. We will briefly describe

each system below. Fuller descriptions will be provided as we address each

individual system.

The first system examined duplicates the system described in Wunderer

(Wunderer, 1978). It uses a pseudo-Gaussian external source for the first

species, nonresonant charge transfer from the first species to the second,

and recombination for both species. The entire purpose for examining this

system is to demonstrate that the present model produces results consistent

with previous theoretical analyses, in a regime where both the previous

analysis and the present one are applicable. Because of the contrived

nature of Wunderer's system, we do not attempt to draw any general

conclusions.
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A second system uses uniform external ionization for two species,

diffusion as a loss for both species, and recombination as an additional loss

for the second species. Here, we are interested in examining deviations

from proportionality and discovering scaling relationships for recombining

multi-ion plasmas. That being the case, we use quasi-realistic gases, in the

sense that their parameters are reasonably close to those of real gases, but

are chosen more for convenience in demonstrating the desired effects.

Another system also uses uniform external ionization for both sources,

but includes nonresonant charge transfer from the first species to the

second species instead of recombination. We are interested in examining

deviations from proportionality and discovering scaling relationships, and

so we again use quasi-realistic gases, still in the sense that their parame-

ters are reasonably close to those of real gases, but are chosen more for

convenience in demonstrating the desired effects.

Volume Ionization. Three systems were examined that used volume

ionization sources. The first two are used to demonstrate the applicability

of the new model to physical systems. The last is a generic system used to

investigate recombination and volume sources in a discharge.

One system models a helium-neon mixture, at various mixture ratios.

The new model is used to calculate the electron temperature required to

meet the eigencondition of a volume-ionized discharge. The electron

temperatures calculated are shown to agree with previous theoretical

results for pure gases and mixtures, and to experimental results for

mixtures.
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In a second case, the new model is used to calculate electron tempera-

tures and electron wall fluxes for two different systems based on an

impurity-contaminated N2 discharge. The first system considers an N2 ÷ -

N 4+ discharge model. This system has a volume source term for N2 + ,

charge transfer from N2+ to N4
4 as the only source for N4' , and dissocia-

tive recombination of N4
4 as a loss term. The second system uses an

N 2s - -IN2  discharge model, with direct ionization of N 2÷ and charge

transfer from N 2 ' to HN 2 +. The N 2 + - N 4 + system models dissociative

recombination, which is not present in the N 2 ' - HN 2 + system, and provides

information about the relative importance of the two species. However, the

N2+ - HN2
4 system allows us to see the effects of small admixtures of a more

mobile ion. This example demonstrates the ability of the model to use only

two ion species to describe systems to a fair degree of accuracy, when those

systems have more than two ion species. The results are compared to

experimental data of Schmidt (Schmidt, 1965).

A third system uses volume ionization for both species, and recombin-

ation as a loss term for the second species. As in the corresponding

external ionization case, the primary purpose is to discover more about the

deviations from proportionality and establish scaling relationships. That

being the case, the system once again uses quasi-realistic gases, still in the

sense that their parameters are reasonably close to those of real gases, but

are chosen more for convenience in demonstrating the desired effects.

Algorithmic Method. An algorithm usually described as the relaxation

method was used to solve the two-point boundary value problems arising

from this investigation. This is a boundary value problem-solving algo-



rithm based on recasting the problem as a minimization of the error

between the finite differenced form of the derivatives, and the functional

form that the derivatives are equal to. This error is evaluated over the

entire region, and then an iterative process is used to approach the correct

solutions. The code used to implement the relaxation algorithm itself is

from Numerical Recipes the Art of Scientific Computing (FORTRAN

Version) (Press, et alia, 1989). For complete details on the programs, see

Appendices C and D. Appendix C describes the overall structure of the

programs, including a more complete explanation of the relaxation

method. Appendix D describes each separate program, including listings

of the various source codes and makefiles.

All solutions were produced on a Commodore Amiga 3000UX computer

using the NKR, Inc Fortran-77 compiler and Unix System V, Release 4,

Version 1.1. The maximum resolution allowed in the code was 201 mesh

points, determined primarily by the balance between the need to have

sufficient accuracy to describe physically pertinent detail and speed of

solution. At the maximum resolution used (201 points), five to ten itera-

tions were performed per second. This was fast enough to allow interactive

operation of the program. Since the time required scales approximately as

the square of the mesh size, increasing the mesh size dramatically slows

the algorithm. Therefore, higher resolutions were not used. This 201-point

resolution was generally used for all calculations of final results. Floating

point calculations were performed using 64-bit reals to ensure that roundoff

error did not affect the results.
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Comparisons

At this point the process of comparing the new model developed in this

effort to the results of other authors begins. The goal is to show that the

new model can accurately depict diffusive plasma discharges containing

multiple ions. We do that by comparing our results with calculations from

previous models, and with experimental results.

Comparison to Wunderer's Results. Wunderer developed a multiple ion

model using an initial derivation based on Schottky's assumption of

congruence, much as previous authors such as Oskam did (Wunderer,

1978; Oskam, 1958). The result is the following system of differential

equations, one for each ion species:

0 =ý n.UI (V_•_.• . • +- Vnn+ U+V2ni (6-3)A• n.io ni I +t Caol

Here, gi is the particle mobility, and U is the particle energy (corresponding

to kT). The collision term represents the net source or loss of each species

due to ionization, charge transfer, recombination, and so forth. This result

is dependent on an expansion of the electric field corresponding to the small-

e-flux approximation.

Wunderer discusses extensively the validity of the assumption of

proportionality. However, since the validity of the that assumption has

already been addressed in Chapter IV, Wunderer's numerical solution is

more germane to the matter at hand.

Wunderer gives one example of a complete solution. This example is for

a time independent system with cylindrical geometry, with an external

source for the first ion species only, charge transfer from that species to the
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second species, and recombination for both species. There is no pretense

made that this model is a good representation of any particular realistic

gas. However, the geometry is readily realizable, and the gas parameters

correspond approximately to those appropriate for H3+ and H30÷. Wunder-

er's primary purpose was attempting to model a system where he was

certain that proportionality would not hold. The utility for this investigation

is in comparing two different approaches (ours and Wunderer's) to the

same system, and seeing how they compare.

In the present model, the continuity equations for this case become:

a = f1(r) - vcnj - ainrn,
c)r

(64)
W = vcnl - a 2 n 2n,
ar

Species 1 (ni) corresponds to H 3+, and species 2 (n2) to H30+, formed by an

associative charge transfer reaction with H20 . Wunderer used values

appropriate for a pressure of about 0.1 T. Note that "n" in this case is not

the normalized "n" used earlier, but rather is the physical variable. This

matches Wunderer's notation. Note also that the right hand side of each

equation is the same form that Wunderer uses for Sn/8toll .

In order to compare with Wunderer's solutions, the same norlmalized

system of equations must be used. His equation (40) provides the following

definitions (with some modifications to described shortly):
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R
U ___Te

kTi

D., = D1(I+U)

fp)= DIA

N.• A (6-5)

G = VC10
Dal

a 2 Dal

S = R2Aa2
Da2

Da2

Tp=R ar

where R = discharge radius (cm)

= diffusion coefficient (cm 2/s)

= external source term (cn 3/s)

A = normalization for the external source (cm 3)

v= charge transfer collision frequency from species 1 to 2 (Hz)

c= recombination coefficient for species i (cm 3/s)

These definitions correct a minor flaw in Wunderer's definition. His

normalizations of fl and n.,i were inconsistent; one or the other was not

dimensionless. We chose to correct this by leaving the normalization for
/

n., as Wunderer had it, and correcting that for f. In effect, Wunderer's

normalization is equivalent to assuming R = 1.0
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In addition, we use the following definition for the normalized current

density:

r, R (6-6)

Once more, note that this is not the same normalization used in Chapters

III, IV, and V. Instead, this normalization is chosen to be consistent with

Wunderer's notation. The concision is unfortunate, but unavoidable.

These definitions and the new model produce the following system:

aN-- - Y1(1+U) + NLU(¥Y + 2)
ap No

aN__e,= (If + 12)
ap

(6-7)
- A-i_ + f -TSN 1 N* - GN1ap P

ýA =. -A + GDN 2 - SN2N.

ap p

The source term is of the form

f(p) - e xP(. (6-8)

In this notation, "TS" represents the normalized recombination coefficient

and "G" the normalized charge transfer frequency for N1, and "S" is the

normalized recombination coefficient and "GD" the normalized charge

transfer frequency for N2 . "r" is the external source term. The first two

equations are the momentum equations, and the second two the continuity

equations.

The solutions were found using the relaxation method algorithm, as

described above. All input parameters used were identical to Wunderer's,

and are shown below:
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D = 0.9 => The two ions have very similar mobilities and diffusion
coefficients.

T = 0.2 => Species 2 has approximately five times the recombination
rate as species 1.

U = 5 => The electron temperature is five times larger than the ion
temperature.

G = 0.178 => The charge transfer loss frequency for species 1 is about
1130 the diffusion loss frequency.

S = 100 => The recombination loss frequency for species 2 is about 20
times the diffusion loss frequency.

Here, the diffusion loss frequency is defined as D,/(R/Xo)2, where X0 is the

first zero of the zero-order Bessel function Jo .

Since no analytic solution was available, even for simplified reactions, a

very simplistic initial starting function was used. This starting function

was determined by formally integrating the continuity and momentum

equations as if the external source had no spatial dependence, but evaluat-

ing the densities and fluxes using the actual spatial dependence of the

source. This very poor approximation contributed to lengthening the

iteration process. Even so, convergence to better than one part in 107 was

achieved in less than 60 iterations. This compares to Wunderer's iteration,

which required 100 iterations to achieve convergence to within one part in

105 (Wunderer, 1978:411). The increased efficiency may be due to a more

efficient numerical algorithm. However, it certainly appears that the

present model may offer advantages over Wunderer's.

In Figure 6-1 we give our results, comparable to Wunderer's Figure 2.

Our results are indistinguishable from Wunderer's Figure 2, within the

limits of accuracy of Wunderer's figure (Wunderer, 1978:413).
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Figure 6-1. Normalized Number Densities and External Source Term For
Wunderer's Example System

As in Wunderer, all the densities are normalized by their on-axis

values. As a result, N2 appears to be larger than N.. N1 is proportional to

N. , within high accuracy. As shown above, the value of G indicates charge

transfer from N1 to N2 that is approximately 3% of the diffusion loss for N1.

In addition, S indicates recombination for N2 that is some 20 times the

diffusion loss for that species. The overall system is one where N1 ,the

species with the largest source term, also has the smallest volume loss
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term. As a result, this discharge is dominated by N 1 . For instance, our

results indicate that the flux of N1 at the edge of the plasma is 40 times

larger than that of N2 .

The results shown later in this chapter indicate that the dominant

species in a system like this can often be described by a proportional model.

This is confirmed by Wunderer's results, which show the same results for

N1 and N. with or without assuming proportionality (Wunderer, 1978:412).

Later in this chapter we will see other instances of domination by one

species leading to proportionality of the dominant species. This proportion-

ality does not imply that solutions for that species can be found by ignoring

the nonlinear effects. Instead, it results from one species being such a

minority in the discharge that the electron density and other ion density are

essentially equal.

Proportionality definitely does not hold for the other species. Clearly, N.

and N 2 do not have the same spatial profile. In fact, the profile for N 2 is

flattened, when compared to N1 . This is consistent with results to be

presented later, which show this effect to a greater extent. Wunderer also

presents results which depict the wall flux for species 2 as calculated by a

proportional model being in error by 30% (Wunderer, 1978: 412-413).

We should note the implications of the extremely close agreement we

found between the results presented above and Wunderer's. The system

Wunderer modeled is very complex, with a highly nonuniform external

source, charge transfer from one species to another, and recombination for

both species. The source term is far from any simple analytic form, and

there are linear and nonlinear kinetic reactions occurring. The differential
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system we solved bore little resemblance to Wunderer's. Yet, the model

produced essentially identical results in fewer calculations. Th'-. this

case gives very strong evidence to the validity and utility of the new model.

Temperature As an Eigenvalue. Next, we wish to evaluate the relation-

ship between the discharge parameters and the electron temperature. As

noted in Chapter V, the electron temperature can be considered an eigenval-

ue of the system for systems driven by volume ionization. In particular, the

electron temperature affects the ionization rates of the various species, as

well as entering directly into the differential equations. Thus by incorporat-

ing the appropriate plasma parameters (ionization thresholds, pressure,

dimensions, and so forth), one can calculate the electron temperature for

various systems. For this investigation, the electron temperatures deter-

mined by the new model were compared to theoretical and experimental

results of other researchers.

The investigation serves two useful results. First, it provides verifica-

tion of the numerical method, including correct solution of the differential

equations and proper incorporation of electron temperature into the model.

Second, it demonstrates that the proportional analytic solutions described

in the last chapter are useful to describe realistic systems.

We compare the results to Young's analysis of electron temperature in

helium-neon glow discharges, which was based on an earlier work by

Dorgela, Alting, and Boers (Young, 1965. Dorgela et alia, 1935). Young

used an expression developed by Dorgela, Alting, and Boers that related the

mobility, initial slopes of ionization efficiencies, ionization potentials, and

gas fraction to the electron temperature in order to calculate electron
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temperatures for situations comparable to the experimental conditions of

Labuda and Gordon (Young, 1965; Dorgela, et alia, 1935; Labuda and

Gordon, 1964):

2 (pD t) ( Ei 1+ eViu. ex4- e"ifi cT J kT,

(6-9)
= (3OMf) 2X•Lm.)2 = 1.72x10"7 V12 sec cm -3 Torr -2

Young showed that the expression gave reasonable agreement to the

Labuda and Gordon results. As reported by Young, the Dorgela et alia

expression is a multi-ion form of von Engel and Steenbeck's earlier work,

and states an eigencondition for the electron temperature with a total

ionization frequency based on a weighting with the gas fraction f. If the

eigencondition reported in the fifth equation in Equation 5-77 is evaluated

using von Engels Equation 8.36, the results are, with two exceptions,

identical to Equation 6-9 (von Engel, 1965:293). First, Equation 6-9 contains

an additional 1/(1+e) term involving the ratio of the ion and electron

temperatures appearing on the left hand side of the Equation 6-9. This term

accounts for the ion temperature dependence in the differential equations

that Young's model did not. Second, the numerical factor of 300 Young

uses to correct for inconsistent units does not appear in Equation 5-77. The

first difference represents a difference in the physical model. The second

difference is inconsequential; Equation 5-77 uses consistent units and does

not need the correction factor.

Our intent was to compare our results to Young's. Therefore, we used

the same ionization source and diffusion loss term. In addition, we used
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Blanes law and Young's input values for the mobilities, ionization poten-

tials, and ionization efficiencies to calculate the necessary input values of

diffusion coefficients and ionization potentials for our calculation.

To perform the calculations, we used a variation of the multi-ion model

used for the various volume ionization systems later in the chapter, with

the only significant modifications being in the output format. This uses the

full formal methodology applicable to nonproportional multi-ion systems.

The full nonproportional model was used for several reasons; to verify the

accuracy of the program coding, to show that the nonproportional model

reduces to proportional solutions for appropriate source terms, and to show

that the single-ion solutions are identical to Schottky's well-known solu-

tions.

The numerical method solves for the fluxes, the number densities, and

the electron temperature. It begins by assuming the analytic solution from

the CV case, Equation 5-13 that for single ions is identical to the Schottky

solutions. To determine the values for the analytic solution, it solves the

eigencondition of the fifth expression in Equation 5-77 of the last chapter

using an ionization freq, ency vi based on a Maxwellian distribution for the

electrons and a linear dependence of cross-section on energy. The expres-

sion for vi is equivalent to von Engel's (von Engel, 1965:293). This produces

an initial value of the temperature that is used to generate the fluxes and

number densities. The method then uses the relaxation method to iterate to

the actual multi-ion solution that satisfies the momentum and continuity

equations, inc!uding the electron temperature as one of the variables. The

final solution is the set of fluxes, densities, and electron temperature that
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meets the multi-ion boundary conditions and satisfied the multi-ion

differential equations.

If the two models were equivalent, iteration would not be necessary; the

analytic and numerical solutions would be identical. That is exactly the

result. The only time that convergence did not occur instantly was when

the numerical method used to calculate the temperature for the analytic

solution used a larger tolerance than the iteration method used to find the

actual multi-ion solution. For instance, if the initial tolerance in finding

the analytic solution for kTe was 103, then the temperature might be off as

much as one part in 1000. If the tolerance for solving the differential

equation were 10-6, additional iterations might be required to reduce the

error in kT. from 1 in 1000 to 1 in 1,000,000.

Given the exact match between our results and Young's, we do not

present any actual results. Rather, we merely note that in every case the

differences were less than 1%, and are attributable to the factor of 1+e that

appears in our model, but not in Young's.

Both Young's results and the present calculations adequately describe

experimental results for this rather simple two-ion system. However, the

present model can accommodate more accurate descriptions of the reaction

kinetics and ion parameters, and can also include the reactions occurring

in more complicated discharges that Young would not have been able to

describe at all.

In summary, this comparison demonstrates several points:

1. The numerical method properly accommodates electron tempera-
ture variation, and correctly solves the differential equations.
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2. When using the same expression for ionization frequency and
mobilities, the proportional multi-ion solutions of the CV case give
the same electron temperatures as previous simpler models do,
except for a correction factor of 1+e that the previous models did not
account for.

3. In the single-ion case, the CV case reduces precisely to Schottky's
results.

4. Based on the close agreement with Young's results, both models
agree well with the experimental results of Labuda and Gordon
(Young, 1965. Labuda and Gordon, 1964).

Comparison to Schmidt. In the previous discussions we compared our

model to other theoretical models, and to experimental measurements of

electron temperatures, all in fairly simple systems. Next, we will compare

the results of our model to experimental measurements of a more compli-

cated multi-ion system. This comparison does two things. First, it provides

a further opportunity to show the applicability of the model to realistic

systems. Second, the comparison will demonstrate an effect of introducing

an impurity gas of high mobility into a discharge.

We look at a comparison between our model and results obtained by

Schmidt for the nitrogen plasma (Schmidt, 1965). Schmidt performed

measurements of the positive column of a 40 cm long, 3 cm diameter

nitrogen glow discharge at pressures ranging from 0.75 to 3 T, which is

high enough to ensure diffusion conditions for both ions and electrons. He

measured electron and ion fluxes at the walls, using mass spectrometry to

distinguish the various ion species. He also measured longitudinal current

and longitudinal field as a function of position. Finally, he reported values

for the electron temperature.

Schmidt measured both electron and ion fluxes at the wall of the

discharge. His results showed the electron wall flux increasing with
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increasing discharge current at a fized pressure, and with decreasing

pressure at a fixed discharge current. His measurements of ion fluxes

produced evidence of N+, N2+, and N3÷ ions at the wall of the discharge.

Furthermore, he stated that the measurements of N2÷ may have included

N4÷ as well. He gave no explanation of this statement. We note that the N4+

ion is essentially an N2+.N2 dimer. Such dimers are often easily dissociated

by the high fields used in mass spectrometric measurements, and only the

charged constituents detected. Furthermore, for the pressures and

number densities of his discharge, we will see that we would expect the flux

to be preponderantly N4+ in at least some cases. In addition to the various

nitrogen ions, he measured H÷ ions, as well as NH 4+ ions, even though he

claimed to have used only pure nitrogen in the discharge. In fact, at the

highest pressures and discharge currents, H+ becomes the dominant ion

flux measured (Schmidt, 1965:152-153). No explanation beyond unnamed

impurities adsorbed in the apparatus was given for the source of the H+

ions. Schmidt gave several multi-step processes as the possible sources for

the NH 4÷ ions, but did not further discuss the source of the hydrogen

(Schmidt, 1965:152-158). His flux results for the individual ion species

showed varied dependencies on discharge current; some species increased

with discharge current, some decreased, and some attained a maximum

and then declined. The data on the individual ion fluxes appear to be so

species-dependent that general statements would not be appropriate, except

to note the expected result that the fluxes decreased as pressure increased.

He also gives measured values for the electron temperature as a

function of discharge current. He shows the electron temperature decreas-
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ing as the pressure increases, and as the discharge current increases. The

dependence of the electron temperature on discharge current appears to

depend on the pressure considered. At 0.75 Torr, there is little dependence;

at 1.5 Tort, kT. decreases slightly with increasing current, and at 2.0 Torn

the decrease is more pronounced (Schmidt, 1965: 155). Either multi-step

ionization or ionization from the dissociated state could be an explanation.

In either case, the increasing electron number density produces higher

densities of the intermediate state with concomitant higher ionization

rates. However, there is not enough information in Schmidt's results to

clearly determine which is the explanation, or if some other mechanism is

present.

Schmidt used probes to measure the longitudinal potential as a function

of position, from which he then obtained the longitudinal electric field. His

results show the field decreasing as the longitudinal current increases,

and as the discharge pressure increases (Schmidt, 1965:155). These agree

with the temperature behavior. The ratio of total electric field to back-

ground number density is a parameter that can be used to describe the

ionization rate much as the electron temperature can be used (von Engel,

1965: 179-185). Therefore, the similarity of the behavior of field to the

behavior of the electron temperature is not surprising.

Basis for Comparison with the New Model. We will not attempt to

accurately simulate all species and all details of this discharge. To do so

would require much more information on the gas mixture than is available

from Schmidt. Furthermore, although the general theory could certainly

be used to develop a model that coupled the longitudinal field into the
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discharge, the present version does not do so. Therefore, we will not

attempt to model that field. Rather, we used Schmidt's measured values to

determine some of the input parameters to our model.

We will select aspects of the discharge, and compare our theoretical

results with the experimental results of Schmidt. In particular, we will

examine his results for electron temperature in the discharge and for

electron fluxes at the wall. The electron temperature comparison is

hampered somewhat by the apparent experimental scatter of Schmidt's

results and by the impracticality of trying to include all the species in the

model.

We will model the discharge in two ways. An N2 +-N4 + syStem will first

be used. This allows clear demonstration of the results of such reactions as

charge transfer and dissociative recombination. Experimental examina-

tion of such reactions can be complicated by the difficulty of separating the

various effects. An N2 -HN 2 ÷ system will be used second. This will

highlight the sensitivity of the discharge to trace impurities.

For either case, we must determine various input parameters from

Schmidt's data. The physical parameters of the discharge, including

pressure, are given directly. However, one of the input parameters needed

is the on-axis electron density. Schmidt did not provide values for this.

Instead, he presented his results as a function of the longitudinal dis-

charge current. This must be converted into the on-axis electron number

density, N. 0 . The total longitudinal current is

I = evdf N.(r)27crdr (6-10)
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where vd is the electron drift velocity. For the values pertinent to this

system N. can be written as

N.(r) = NeoJ(+o) (6-11)

Here, Xo is the first zero of the Bessel function Jo, and R is the radius of the

discharge. The validity of Equation 6-11 depends on the electron density

being well-represented by a Schottky profile. This was the case for all the

cases examined. Of course, Equation 6-11 is not necessary to the solution of

the problem; it is possible to integrate the actual number density profile

and multiply by the drift velocity to get the current. The calculations

performed both analytic and numeric integrations. The difference was

never as high as 10%, and usually was much less.

Equation 6-11 allows evaluation of the integral in Equation 6-10, express-

ing N.o in terms of I, vd, N.o, R, e, and X0 . N. 0 can then be determined

from the data of Schmidt and the drift velocity, vd . Fortunately, the

information to find a reasonable estimate of the drift velocity is available.

Schmidt gave values for the measured longitudinal electric field as a

function of the discharge current (Schmidt, 1956). Those values, and the

pressure, produce E/p. The relationship between drift velocity and E/p has

been widely investigated. For convenience, we use results from von Engel

(von Engel, 1965:124). Thus, once we determine the pressures and dis-

charge currents we are interested in, we can determine N. 0 .

N2÷ - N 4÷ Systems. For the first set of calculations, N 2' and N4' were

assumed to be the two ionic species in the discharge. N2' is formed by

direct electron impact ionization, according to the reaction
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N2 + e- -+ NJ + e- + e- (6412)

N 4÷ is formed by three-body collisions, according to the reaction

NJ + N2 + N2 -ý NI + N2 (6-13)

This reaction, of course, is also a loss for N 2÷ Finally, the dissociative

recombination loss reaction for N 4÷ is

N4 + e- -+ N 2 + N 2  (6-14)

These reactions produce the following set of momentum and continuity

equations for the two ions:

kTj KIaNi r; N. I_

ar Di N9 (kTe + kTi)

aN. _

ir kT. + kTi

arl = viN.- kNI - F-1 - (6-15)

•r2 =kN1 .cxN2N.- r2.
ar r

r. = kN.- aN 2N. - r-
ar r

Note the change in the meaning of the subscripts; N1 refers to ionic species

1, or N 2÷ , while N 2 refers to ionic species 2, or N4+ . We obtained the value

for v, from Von Engel, just as we have in the other numerical calculations.

(Von Engel, 1965:293). We obtained the value for k, the rate coefficient for

associative charge transfer, from the Smith and Adams article in Lin-

dinger, Mark, and Howorka (Smith and Adams, 1984: 194 - 217). Finally,
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we obtained the value for a, the recombination coefficient, from Whitaker,

Biondi, and Johnsen (Whitaker, Biondi, and Johnsen, 1981). To summarize

the values of the various input parameters:

1. Diffusion coefficients were 51.7 and 63.07 cm 2/s for N 2+ and N4+,
respectively, based on Schmidt's mobility data (Schmidt, 1965:155).

2. Ionization for N2÷ was based directly on von Engel's formulation,
using an ionization potential of 15.8 eV and initial slope of the
ionization efficiency of 0.161/cm-Torr-Volt derived from Kieffer (von
Engel, 1965: 293. Kieffer). Since N4÷ is not formed by direct ioniza-
tion, its ionization rate was set lower than that of N 2÷ by >30 orders of
magnitude (the algorithm requires a non-zero value).

3. The rate coefficient for associative cht-ge transfer, from
Lindinger, MArk, and Howorka, was 7.5x10" cm /s (Lindinger,
MArk, and Howorka, 1984:208).

4. The recombination coefficient was based on Whitaker, Biondi, and
Johnsen and was given by a = 3.128x10? (T./leV)°' cm3/s (Whitaker,Biondi, and Johnsen, 1981).

These particular species were chosen for two reasons:

1. They are the dominant species occurring in a pure N 2 discharge
for the conditions depicted in Schmidt. This conclusion is supported
by Schmidt's results, which show N20 as the dominant nitrogen ion
in the discharge and indicate that N4

4 could have been the species
measured instead of N2'. It is also supported by our calculations,
which indicate that, if anything, N 4+ is present in larger quantities
than N2+.

2. They allowed us to include a realistic set of reactions that are more
complex than the simple systems we have examined so far. Incorpo-
rating such complicated processes in the system would test both the
numerical correctness of the procedures and the physical validity of
the model.

We would be surprised if we were able to match Schmidt's results

exactly with this set of ions and reactions. For one thing, Schmidt's system

had hydrogen produced from some unknown source. Hydrogen ions (either

H÷ or H2') are extremely mobile compared to the various nitrogen ions. As

we will discuss later in more detail, the presence of even small amounts of
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hydrogen in the discharge can lead to higher electron fluxes and necesai-

tate higher electron temperatures. In addition, we would expect to see

effects due to the presence of the other nitrogen-containing ions in the

plasma. However, we feel that testing the ability of the new model to

describe discharges accurately using simplified kinetics is important.

We chose to make two comparisons to Schmidt. One was the electron

temperatures. The other was the electron fluxes at the wall, determined

from the electrical current density due to electrons that Schmidt gives in

his Figures 4-6 (Schmidt, 1965:152-153).

Before discussing the two comparisons, some general comments about

the results would be appropriate. On axis, the number density for N 2÷

relative to N 4+ was approximately 2% at 2 T, 5% at 1.5 T, but approximately

35-40% at 0.75 T. The recombination loss was smaller than the charge

transfer or ionization rates by factors in the range of 3 to 10, and generally

closer to 10. Recombination, though present, is not dominating other

source or loss processes. Instead, the discharge is largely governed by

volume ionization, charge transfer, and diffusion. The analytic solutions

in Chapter V indicate that such discharges are proportional, with Schottky

number density profiles (Bessel functions in this geometry). Such a descrip-

tion is consistent with the results for the integral of the electron number

density, which showed close agreement between the numerical integration

and the analytic integration based on Equations 6-9 and 6-10. This close

agreement indicates that the solutions were close to the proportional

solutions that charge transfer with no recombination would have produced,

and therefore indicates that recombination was a small effect in the overall
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system. In fact, given the small contribution of recombination, it would

have been possible to model this system analytically with reasonable

accuracy, except that determination of the electron temperatures would

still require numerical calculations.

We also note that our calculations enable us to distinguish between N 2+

and N 4÷ and provide predictions of the proportions of each present in the

discharge. Schmidt's experiment was unable to do this. Schmidt's only

discussion of N 4÷ is a short reference indicating that it may be present in

his N2÷ measurements (Schmidt, 1965:156).

Now, let us examine the results of the comparisons between our model

and Schmidt's experiment, starting with the electron temperatures.

Figure 6-2 compares the electron temperatures measured by Schmidt and

those obtained from the model. There is a clear disagreement in the

scaling of the temperatures. Schmidt's values are higher, by as much as

50%. Considering the sensitivity of the ionization rates to electron tempera-

ture, this is a significant disparity. For instance, the difference between the

value of 1.44 eV that the calculations produced for 70 mA and 1.5 T and

Schmidt's measurement of 1.85 eV corresponds to an increase in ionization

rate of approximately 12 times. Losses in Schmidt's system that are not

included in our system might explain the difference. When we discuss the

N 2 ÷-HN 2 + system we will examine such a possible loss, and go into more

detail on the effects of such losses on kT..

It is difficult to determine if the calculated results and Schmidt's differ

in the relationship between current and temperature at each pressure.

Schmidt's data gave little definitive correlation about the relationship
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Figure 6-2. Comparison of Calculated and Measured Values of Electron
Temperature at Selected Discharge Currents

between current and temperature. Although his data did not include

indications of experimental error, this lack of correlation appears to be due

primarily to scatter in his data. If any correlation exists, it is in the

decreasing temperature with higher current exhibited by the measure-

ments at 1.5 and 2.0 T. Examination of Schmidt's Figures 13, 14, and 15

reveal that the measured H' flux as a fraction of the total flux increases

with increasing longitudinal current at 0.75 T, but rose to a peak and then

declined at 1.5 and 2.0 T (Schmidt, 1965: 156-157). This could provide the

explanation; as will be shown in the next section, as hydrogen becomes less

of a factor in the discharge, the temperature can decrease.

The calculated temperatures are almost constant with respect to

current, exhibiting a slight increase as current increases. This is consis-
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tent with a discharge that has recombination present, but for which

recombination is not dominant. Higher currents imply higher N..

Recombination, as a loss term quadratic in N. 0 , will increase more rapidly

with increasing N.O than diffusion or ionization. This increased loss term

requires the increased ioin 'ation associated with a higher electron temper-

ature.

There is one area of clear agreement between the two sets of data. Even

if we take into account the experimental scatter, both our results and

Schmidt's show temperature decreasing as pressure increases. This is a

direct consequence of the balance between source and loss that determines

the electron temperature. Using the example of a proportional volume

ionization system, we note that the eigencondition expressed in Equation

5-77 requires d(l+)E)Yvi/Di to be constant. As the pressure increases, Di

decreases. To maintain the entire expression constant requires a corre-

sponding decrease in vi and therefore in kT.. Schmidt's system represents

a more complicated case, but the general arguments still apply. We still

expect to see temperature decreasing as pressure increases.

Results for the fluxes reveal closer agreement. In Figure 6-3 we show

the calculated and measured electron fluxes to the wall. Overall, these

results show closer agreement to the experimental data. The calculated

dependencies of the fluxes on pressure and electron current are very

similar to the experimental dependencies. The differences in magnitudes

are not disturbing. The calculated results are sm'aller by factors of at most

2.5. This difference is not surprising, given the generally higher tempera-
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Figure 6-3. Comparison of Calculated and Measured Electron Wall Flux

tures that Schmidt found. In fact, let us demonstrate how those higher

temperatures can more than explain the difference.

Consider the effect of higher kT. on the fluxes in a recombining plasma.

For simplicity, consider a single-ion plasma, with no sources other than

volume ionization and recombination. For such a plasma the continuity

equation is

_ vN. - eN•- (6-16)
•r r

As discussed above, the higher temperatures reported by Schmidt produce

an ionization frequency as much as 15 times higher than the calculations.

If only volume ionization were present, this would imply fluxes 15 times

higher, also. Recombination reduces this somewhat, but not by the factor of
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six difference between 2.5 and 15. Experimental error, either on Schmidt's

part or in the data used to produce the inputs for the calculation is possible

as well. If those effects are not enough to account for the six-fold difference

between the ionization rates and the fluxes, then we must assume addi-

tional volume losses due to reactions not included in the calculations.

Considering the many sptiies Schmidt reported that are not included in the

model, such an explanation is reasonable.

For several reasons, we do not compare the calculated results with the

experimental ion fluxes. First, our total ion flux, of course, is equal to the

electron flux. Schmidt's total ion flux does not equal his total electron flux,

implying losses or calibration errors in his measurement equipment.

Without more information, it is impossible for us to determine how, or

indeed, if his losses varied from ion to ion. Therefore, it is difficult for us to

compare relative fluxes. Second, Schmidt does not distinguish between the

N 2÷ flux and the N4+ flux. This makes comparisons of fluxes of those

species in his results impossible. Finally, even if we were modelling

species that Schmidt gives distinct results for, the presence of so many

other species in Schmidt's experiment distorts the results to the point that

comparisons lose much of their meaning.

N2÷ - HN2÷ System. Let us now examine an N2÷-HN 2÷ system. Our

purpose is to demonstrate a mechanism that increases the temperatures

and fluxes. The presence of charge transfer from N2÷ to a more mobile ion

would force a higher temperature and also increase ionization. Since

charge transfer does not reduce the source for electrons, the higher

ionization would also produce higher electron fluxes.
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Schmidt reported IH+ in the fluxes at the wall of the discharge (Schmidt,

1965: 152-153). This implies the presence of H 2 as in impurity in his

discharge. That being the case, charge transfer will occur according to the

following reactions:

k

NJ + H2 - HNI + H
(6-17)

k
N + H2 - N2 +HJ

This is a near-resonant charge transfer reaction, with a difference in

ionization potential of only 0.56 eV for the formation of HN2 + and 0.06 eV for

the formation of H 2+, and with N 2 + having the higher potential in both

cases(McDaniel et alia, 1980: 2732). McDaniel et alia report that these

reactions have a combined reaction rate of 1.8x1O09 cm 3/s, with HN 2+ as the

predominant product (McDaniel et alia, 1980: 2732), and show other results

that HN 2*is the only product, with a reaction rate coefficient of 2x10 9 cm 3/s

(McDaniel et alia, 1980:2345). With only trace amounts of H 2 present, and

therefore even less H, recombination is unlikely for either species. In

addition, the intent of the calculation is to examine the effects of hydrogen

impurities on the discharge, not the effects of recombination. With no

recombination present, this is a three-ion proportional system similar

to,the CT case of Chapter V. The eigencondition that determines the

electron temperature in this system is

R (1+e)\ Di D2 3 (6-18)

where vt2 and vt3 are the charge transfer frequencies from N 2 + to NOH and

H2+, respectively, and K1 is N 1/N,. Equation 6-18 can be expressed as

6-34



- (1+ t+ Y& D-K 1  D3 P (6-19)

RI=(1+E) ~ D1 12 VJ&DTDs

with vt defined as (vt2 and vtS) For the valies used in these calculations,

the third term on the right hand side can be neglected, allowing modelling

of the discharge as a two-ion discharge with a charge transfer frequency

equal to the total of the two individual charge transfer frequencies.

Although information on the diffusion coefficient for HN 2 + ions in N 2

may exist, we were unable to find any. However, HN2+ has approximately

the same mass as N2+ If both species could undergo resonant charge

transfer collisions with the background gas, we would expect them to have

similar diffusion coefficients. HN 2+ does not undergo any such collisions.

Therefore, we estimated its diffusion coefficient as 200 cm2/s, approximate-

ly 4 times larger than that of N 2+ . For the range of temperatures we found,

large differences in the diffusion coefficient can be accommodated with

small differences in kT, . The four-to-one difference in diffusion coeffi-

cients between HN 2+ and N 2 + will produce noticeable differences in kTe..

However, small errors in D2 will not lead to large errors in kT*.

If we were trying to perform an exact simulation of the discharge, such

estimates would be inadequate. However, our purpose is to investigate the

effect of the introduction of a small amount of highly mobile ions on kTe and

the electron flux. For this reason, the exact values of kTe and the flux are

not as significant as how those values change under H2 contamination.

The input values are summarized below, all for 1 Torr pressure and

1 eV electron temperature:

1. Diffusion coefficients were 51.7 and 200 cm 2/s for N 2 + and HN 2 +,
respectively.
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2. Ionization potential for N 2 was 15.8 V. There is no direct ioniza-
tion producing HN 2÷, so its value was irrelevant. An ionization
potential of 15.8 V was supplied to the algorithm, simply because the
algorithm required a number.

3. Ionization rate for N2÷ was calcx. ted yising a value of the initial
slope of the cross-section of 7.798x10" cm /eV, as reported by Kieffer
(Kieffer, 1973: 82). With no direct ionization allowed, the ionization
cross-section for HN 2÷ is actually zero. However, a nonzero value
was required by the algorithm; the value used was some 30 orders of
magnitude lower than the N2÷ value, and therefore effectively zero.

4. The charge transfer rate constant was 2x10"9 cm 3/s.

We calculated electron temperatures and wall fluxes for 10% H2, 1% H2,

0.1% H 2, 0.01% H2, and 0% H 2, all at 2 T pressure and 80 mA discharge

current. There is no special significance to the choice of pressure and

discharge current, except that it allows easy comparison to Schmidt and to

the previous calculations. In Figure 6-4 we show the results for the

electron temperatures.

We see that the admixture of even slight amounts of H2 can increase the

electron temperature. The addition of only 0.1% H2 produces a value for kT.

of 1.47 eV. This value is comparable to Schmidt's results, which were in

the range of 1.4-1.5 eV. The change from 0 to 0.1% hydrogen represents a

13% increase in kT. , corresponding to ionization increasing by over 4

times. This result is readily explainable. HN2+ has a larger diffusion

coefficient than N2+. As a result, adding hydrogen to the plasma changes

the ratio of net source to diffusion. However, as we will discuss in more

detail later in this chapter, the boundary conditions fix a particular ratio of

net source to diffusion, analogous to the single-ion Schottky condition

(XoR)2 = vWD . Since the increase of ionization frequency with electron

6-36



1.50-

> 1.45-

1.0
I-

U

eL 1.40-

4-)

C

M 1.35-

1.30o

0% 0.01% 0.1% 1% 10%

Percent of H2

Figure 6-4. Effect on Temperature of Small Amounts of H2 in N2

temperature is stronger than any other kT. dependence in the net source or

diffusion coefficient, an increase in the electron temperature will increase

the ratio of net source to diffusion, counteracting the effect of the increased

diffusion losses.

We note a clear saturation effect on the temperatures. The temperature

is approaching the value that would result if the only ions present were

HN 2÷ . This value is slightly above 1.5 eV. Similar effects were seen in the

helium-neon temperature calculations presented earlier. There is a

significant difference. In the helium-neon example, the presence of one

gas had no effect on the net source of the ions of the other gas. Here,

charge transfer not only provides a source HN2 +, but also is a loss for N 2 '.

This causes a much quicker change in the amount of each ion species as
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the gas mixture changes. The result is that at only a 1% hydrogen gas

fraction, HN2 ÷ represents almost 99% of the ions in the discharge. As a

result, the transition from a temperature characteristic of N2÷ to a tempera-

ture c c tic of HN 2÷ is more abrupt.

Our results show that admixtures of even small amounts of H2 can

have a significant effect on the electron temperatures and partially explain

disparities in kT. between the original calculations in pure N2 and

Schmidt's results. The presence of NH 2÷ in the discharge has a significant

effect on the wall fluxes as well. Figure 6-5 shows the particle fluxes to the

wall, again for increasing percentages of H 2 . These are complementary

results from the same series of calculations that produced Figure 6-4.
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"1.0-

0.8-

•'0.6 -

o 0.4-

0.2- - - N2 Flux

0.0- ......... ...
0% 0.01% 0.1% 1% 10%

Percent of H2

Figure 6-5. Influence of Hydrogen on Particle Fluxes
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Once more, we see a dramatic rise with the inclusion of even small

amounts of H2 . This time, a 0.1% addition of H 2 increases the flux by a

factor of 4.35, equal to the change in ionization. As point of reference,

Schmidt's result was approximately 9x10 3/cm2-s, which is achieved by

addition of less than 0.01% hydrogen gas. Again, the importance of these

results lies not in the exact values, but in the fact that small admixtures of

H 2 can produce significant increases.

As did the temperature, the dependence of the flux on H 2 percentage

shows a clear saturation effect. Figure 6-6 shows how the particle fluxes at

the wall shift from N 2' to HN2+ by depicting the ratio of each flux to the

electron flux.
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Figure 6-6. Comparison of H2+ and N2÷ Fluxes with Changing Gas Mix
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For our estimated values, it appears that saturation occurred for a less

than 10% H2 fraction. In fact, for a 10% H2 mixture, the discharge is

completely dominated by HN 2÷. The HN 2 + number density is 750 times that

of N2+, and the H 2+ flux is 3000 times larger than the N2 + flux.

This dominance is the result of charge transfer. At these fractions of

H 2 , the charge transfer rate from N 2+ to HN 2+ is so high that the nitrogen

ions essentially disappear from the discharge. For instance, at 1% H 2

present in the discharge, we found that the charge transfer rate was

5.152X10' 4/cm 3-s, while the N 2+ source term was 5.154x10 1 4/cm 3 -s . In

effect, all the ionization that occurs produces HN2÷.

We should not place too much reliance on the exact point where this

domination occurs, nor on the values we calculated, because of the

estimates of the kinetic and plasma parameters we had to use. The

significance of this analysis is that it clearly shows that the presence of a

minority species can cause significant changes in the nature of the

discharge, far out of proportion to the percentage of the minority ion's

parent gas.

In summary, we compared calculated results from two very simple

models to Schmidt's experimental results. The N2 +-N4÷ model was substan-

tially in agreement with Schmidt's results for the pressure and current

dependence of the electron fluxes at the walls. It also agreed with

Schmidt's results for the pressure dependence of the electron temperature.

Schmidt's temperature data had too much scatter to compare the depen-

dence between temperature and longitudinal current for the two models. A

possible discrepancy between the calculations and the measurements can

6-40



be ascribed to varying amounts of hydrogen ions in the plasma. The only

significant disagreement between the two sets of results was in the overall

magnitudes of the electron temperatures and fluxes. However, the second

of the two models, which used charge transfer from N2 ÷ to HN2÷ clearly

demonstrated that the presence of minority gases can cause changes

sufficient to resolve the differences between the first model and the experi-

mental results. In addition, the simulation was able to provide information

about the relative values for the N 2÷ and N 4÷ fluxes and densities that

Schmidt was unable to produce.

Summary of Verification Results. We have compared the results of this

new ambipolar diffusion model to a number of experimental and theoretical

findings. We found exact agreement with the results that Wunderer

obtained for a very complex system, even though the two models were based

on substantially different assumptions. We verified Young's analytic

model of electron temperature for the restricted regime where that model

were valid, producing results consistent with Labuda and Gordon's

experimental results in that regime. Finally, we found reasonable

agreement between our simple simulations of Schmidt's very complicated

discharge, and were able to use the capabilities of model to demonstrate

plausible explanations for those discrepancies that did exist.

Investigation of Generic Plasma Systems

Having established the validity of the new model, we now turn to using it

to explore physical systems. The systems we will examine can be divided

into two regimes; those driven by external sources, which are not affected
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by the plasma itself, and those driven by volume ionization caused by the

electrons in the plasma. For simplicity, we use cylindrical geometry in all

cases; adding planar geometry would have given different spitial profiles

for the densities and fluxes, but would have added no significant new

physical insight. All the systems involved electrons plus two ion species.

We chose several different phenomena to include in the simulations:

1. We included recombination of the second species. Recombination
is an important process in many gases. In principle, it can occur in
any discharge, if the charged particle number densities are high
enough. In practice, it is one of the more common nonlinear
processes. It is also easier to describe than other nonlinear processes
such as multi-step ionization, since it does not require keeping track
of any neutral species.

2. We also included nonresonant charge transfer. Unlike recombi-
nation, it is not a possibility in every discharge. However, as we saw
in the comparison with Schmidt using the N2+-N4* system, there are
situations in some discharges where it can become significant.

We deliberately chose to neglect some phenomena that might be signifi-

cant in a real plasma. In the two examples involving external sources

volume ionization was neglected, and the electron temperature was

assumed fixed, independent of the external source conditions. In the

charge transfer example, recombination was neglected. In a real dis-

charge, these assumptions might not be valid. However, including them in

these investigations would have obscured the effects of the processes being

investigated. This neglect does not mean that the model could not have

included these effects. It only means that in the present examples the

choice was made not to do so.

External Sources. First, we examine the cases that rely on an external

source of ionization. We discussed plausible mechanisms for external
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ionization in Chapter V. Those same mechanisms are applicable here:

photo-ionization, electron beam, and so forth. For these studies, we

assumed uniform ionization of levels appropriate to intense electron beams.

These source terms correspond to the ionization produced by kilovolt-range

electrons at current densities ranging from microamps to a few tens of

milliamps per square centimeter, with ionization efficiencies per electron

on the order of 1 ionization/cm-T (von Engel, 1965:63). For example, a

10 mA/cm2 beam corresponds to 6.25x10x6 electrons/cm2/s. At 1 ionization

per cm of flight, this produces a source of 6.25x1016 electrons/cm 3-s. We

included recombination as one example, and charge transfer as another

example.

With no volume ionization sources, the eigencondition involving the

electron temperature is no longer appropriate. In an actual plasma, the

temperature would be determined by the energy balance between the energy

input into the system and the energy losses. Describing that process

correctly involves the third moment of the Boltzmann equation. Since this

investigation only includes the first two moments of the Boltzmann equa-

tion, energy balance cannot be addressed. Instead, kT* becomes an input

parameter, instead of being a result of the calculation as it was in the

comparisons to Young and to Schmidt. A value of 1.0 eV was used for all

the calculations. The on-axis electron number density N.o is now deter-

mined from the calculations.

External Source plus Recombination. We examined at a system that

involved recombination for the second ionic species, N2. The diffusion and

continuity equations for the system are
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rjZ

r 1 No (kTM + kTl)

Dj
ar kTo + kTj

1r-- = Si(r) - El (6-20)
ar r

S= S Jr - aN 2N . -

ar r

are = S,(r) - a oN2N. - r
ar r

The pressure was varied between 0.1 and 2.0 T, a range which gives a

reasonable variation and still guarantees that the plasmas investigated

satisfied the basic assumptions of ambipolar diffusion. Electron tempera-

ture kT. was 1.0 9V, and kTj was 0.02585 eV. The tube radius was chosen to

be 5.0 cm; there was no significance to the value, except to insure that the

diameter of the discharge was more than large enough to ensure that the

model remained valid.

The primary parameter of interest was the recombination rate coeffi-

cient a, which ranged between 0 and 10"5 cm 3 /s. The upper limit is

somewhat higher than what we would expect in real gases (e. g.,

von Engel, 1965:158, 160). However, such high values allowed examination

of extremes of recombination which emphasized effects that otherwise

might not be as readily observable. The external source term for both

species ranged from 10 14 to 1017/cm 3 -s at a pressure of 1 T, varying linearly
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with pressure. The variation in external source term was used to keep the

number density of the two species roughly comparable as recombination

varied. Although this variation would not occur in a realistic gas, it was

useful in that it reduced the tendency that would otherwise occur for one

species to completely dominate the discharge at high recombination

strengths. Calculations were also performed with the sources fixed but

with recombination varying in order to verify the effects of only recombina-

tion changing.

Parameters for the individual species (source terms, D, Te, and Ti) were

chosen to approximate a 10/90% helium-neon mixture. However, there was

no attempt to match that system exactly. The diffusion coefficient for

species 1, which approximated helium, was chosen to be 300 cm 2/s, with

species 2, which approximated neon, at 100 cm2 Is. In all cases the diffu-

sion coefficients were to assumed to be constant with respect to changes in

recombination rate.

For that assumption to be valid, the momentum transfer collision

frequency vc must be greater than the recombination frequency for each

affected species. For ions, the recombination frequency is given by o-Ne ; the

corresponding electron recombination frequency is aN 2 . The diffusion

coefficient and average particle energy determine vc . For the ions, the

pressure range, diffusion coefficients, and ion temperature given above

produced a value in excess of 108 Hz for v, , while the recombination

frequency was less than 107 Hz. The electron collision frequency can be

estimated using a value for the diffusion coefficient D. of 106 cm2/s at one
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Torr (von Engel, 1965: 141). This produces a value for v, greater than

109 Hz, while aN2 was less than 3x10 6 Hz in the worst case. Even if D. is

two orders of magnitude higher, v, is still greater than aN 2 . Therefore,

we conclude that we are justified in ignoring the effects of the varying

recombination on the diffusion coefficients.

High-Recombination Example. Figures 6-7 through 6-9 show the

results of one calculation. The input values and pertinent parameters

were:

1. D1 = 150 and D2 = 50 cm2/s, adjusted for pressure.

2. S1 = 2 x 1015 and S 2 = 2 x 1019 /(cm 3-s), also adjusted for pressure.

3. a= 10"- cm 3/s.

4. P. ure = 2.0 Torr.

5. Debye length on axis - 2.5x10 4 cm.

6. Deviation from proportionality: 01 =0.0102 and 12 = 1.0099.

The value for 01 was the smallest of any of the cases examined, and

therefore represents the largest deviation of species 1 from proportionality

of any case examined. On the other hand, the value for 12 represents a

value very close to what one would expect for a proportional discharge, even

though the spatial dependence of N2 is indeed far from proportional. We

will discuss this point shortly.

Figure 6-7 shows the particle densities:
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Figure 6-7. Particle Densities for High Recombination

The "Schottky" profile, included for reference in Figure 6-7, is the

parabolic distribution that would result if only external sources were

present, with those sources adjusted to cause the two curves to match at

r = 0. This highlights the spatial profile difference between the "Schottky"

profile and the profile that N 1 assumes with recombination present for N 2 .

In addition to the change in spatial profile, N 1 actually has a higher overall

density than it would have with no recombination. For the external source

terms listed on the previous page, but with no recombination, the on-axis

value for N 1 would have been approximately 3 times smaller than that

shown in Figure 6-7. At first, this seems contradictory. However, recall

the momentum equation for NI: aN 1/Cr--r1/Di+eN1/N,(r1/Di+ r2/D2 )/(l+e) .

The presence of recombination reduces r 2 , This allows the gradient n.f N1
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to be more negative. As a result, N1 increases more rapidly as r decreases

from the edge of the plasma. As a result, its on-axis value is higher. At the

same time, N. is getting smaller as well. Eventually, the effect of N.'s

decrease overcomes the effect of r 2's decrease, and the on-axis value of N,

starts to decrease again.

It is possible to form an estimate of the on-axis ratio N2/N, by noting that

the losses for N 2 are dominated by volume processes. In that case, the

divergence of F2 is zero, producing S2 = aN.N 2 . The value of N 2 produced

from this express is exactly the same as that volume calculations.

The solutions presented in Figures 6-6 are obviously not equivalent to the

proportional solutions obtained previously for the CX case (which had no

recombination but which was otherwise analogous). We note significant

changes in the functional dependence of the number densities. In particu-

lar, the spatial dependence of N2 is clearly not the same as that of N.. The

number density for species 2 is no longer monotonically decreasing, but

increases throughout most of the discharge, then decreases near the edge.

Let us consider why the recombination-less CX case had the behavior it

did. In the CX case, the source term is external. In the steady state there

must be a sufficient loss to offset that source. If we examine the steady-

state continuity equation for electrons we find that the loss associated with

the divergence of the flux had two contributions: the diffusive fluxes,

defined by F = -DVN , and the field-driven fluxes, defined by the expression

r = vFiN. Electrons respond much more readily to the field than the ions.

Therefore, the equality of electron loss and ion loss that is implicit in the
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ambipolar assumption is achieved by reducing electron flux much more

than by increasing ion flux. Thus, the ambipolar electric field is deter-

mined by the need to reduce the electron flux enough to match the overall

ion flux. However, there must still be a net flow of electrons outward at

every point. Since the electric field is driving electrons inward, diffusion

must drive them outward. Therefore, the slope of the electron density is

negative. Since we had proportional source terms and solutions for the CX

case, the ion densities also have a negative slope.

A different condition pertains for the present case. The electric field is

still reducing the electron flux and increasing the ion flux. But here,

recombination is so large (essentially equal to the source) for species 2 that

the field-rnduced drift of species 2 from the center of the discharge to the

edge causes larger losses than the external source term can compensate

for. As a result, the diffusion-induced current must oppose the field-

induced drift current for that species. The result is N 2 increasing towards

the edge of the plasma. In fact, if recombination increases while all other

parameters remain constant, the on-axis losses can become so large as to

force flow radially inward instead of outward. Such a flow requires an

increasing particle density, not decreasing. It is this effect that we are

starting to see here.

We can also show the requirement for increasing N2 from the diffusion

equation for N 2 . N 2 increasing at r = 0 requires j 2NI/ 1 r2 > 0. The continu-

ity and momentum equations for N2 can be combined to form an expression

for a 2N2/ar2 . Evaluating that expression with the small-e-flux approxima-

tion at the origin and taking advantage of both F(O) = 0 and aN(O)/ar = 0
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produces an expression involving the gas parameters and number densi-

ties, all evaluated at r = 0 :

eN, + Ni < D1 (6-21)

N 2  .-. N- N.

D2 D 2

This form can be used to draw some immediate conclusions. First, note

that the right hand side is the ratio of the dimensionless net source terms

for the two ion species. In the limit as a goes to zero, this approaches

(S 1 /D 2 )/(S 2/D 2 ), which equals N 1 /N 2 for the nonrecombining CV case.

However, the left hand side is always greater than N1/N 2 , implying that

Equation 6-21 cannot be satisfied for a = 0. Indeed, the analytic solutions in

the CV case showed N2 decreasing near the axis. Second, allowing a to

increase causes the right hand side to increase. At the same time, N2 and

N. decrease, changing the left hand side as well. The calculations indicate

that for large enough values of a it is possible for the inequality to be

satisfied, thus producing an increasing N2 •

It would be useful to simplify Equation 6-21. From Chapter V, for a

discharge with no recombination (which is proportional) the conditions for

proportionality can be used to find the ratio N 2/Ne at any point in the

discharge:

NZ D2(6-22)
No. -S

D, D2



Since adding recombination to species 2 can only reduce N2/N., this value

is an upper bound on N2/N.. This allows us to determine a necessary

condition for N2 to have a positive curvature at r = 0:

S'A - < 1(6-21)
aN2 N1(I+e) - N2)

In Figure 6-8 we show the ratio Sd/aN2 (N.(1+e) - N2 ) resulting from a

series of solutions over a range of recombination coefficients.
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Figure 6-8. Effect of Increasing Recombination on On-Axis Curvature

As predicted in Equation 6-23, only the first two solutions shown

(X = 10"14 and 10-13 cm 3ls, respectively) demonstrated a negative curvature

for N2(0). (We show the particle density profiles for these systems in Figure

6-10. Although that figure has relevance to our discussion here, some of its
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features are more readily explained after we have examined the fluxes.

Therefore, we will not introduce it here.)

Let us now return to a discussion of other features of Figure 6-7. Note

that the dominant ion species in the discharge changes, from N1, on axis,

to N2, near the edge of the plasma. This is a direct consequence of the

strongly rising N2 and the steadily decreasing N1 and is the result of a loss

term that does not have the same spatial dependence as the source terms.

In this case the loss is proportional to N2 with the sources proportional to

N.

This change in the dominant species can appear in many situations. In

order for it to occur, the two ion species must have net source terms that

differ qualitatively in their spatial dependence. A typical example is where

other than linear source dependencies on number density (that is, none and

quadratic dependence) give rise to differing spatial profiles. The latter

situation can occur if two conditions hold:

1. One species must have a loss that is a function of number density,
while the other has a gain of some kind (or at least much less
corresponding loss). In the examples above, recombination or
charge transfer served this function.

2. There must be other source terms which do not counteract effects
of the loss term above. They could be independent of the electron
number density, as in external ionization, or at least depend differ-
ently on N than the loss term. An external source term or volume
ionization term can serve this function.

Let us now examine in detail how this switch in species dominance can

occur. Recall the general continuity and momentum equations for the

ions:
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ari .S ri

ar r
(6-24)

ar AD N.e(kT. + kT+)

Assume that the plasma conditions are such that the net source for

species 1 is positive and slowly varying at the center of the plasma while the

source for species 2 is approximately zero (including the Fir term). As a

result species 1 has a flux that increases from zero while the flux for

species 2 remains at or near zero. Now consider the form the momentum

equation takes for species 2 for those regions where F2 - 0:

•S2 N•[kTi• r

= (6-25)
ar N. (ke. + kT+)

Every term in the right hand side of Equation 6-25 is positive, implying

aN2QWr is also greater than zero. Therefore, N 2 increases from the center of

the plasma toward the edge. However, due to the boundary condition, it

must eventually reverse and drop to zero near the boundary. This implies

that MN2/or will eventually become negative. The only possible negative

term in the complete momentum equation is a non-zero r2 . Therefore,

r2 cannot remain near zero. At some point it must rise. Furthermore, the

closer to the edge of the discharge that point is, the more quickly N2 must

drop, and the larger r2 must be. This sudden rise in r2 will be shown

shortly.
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In contrast to the changes of N2, N, will decrease smoothly to zero. If

N2 (0) is close to the value of N1 , but lower, and if the changes in N2 are

large enough, the result can be the change of the dominant ion species

shown in Figure 6-7.

Next, let us look at the fluxes, shown in Figure 6-9, for the same case for

which we depicted the particle densities in Figure 6-7. A limited vertical

axis allows clear depiction of the details away from the edge. At the edge,

we have values of 5.OxlO15 , 5.04x1O 17, and 5.09x0 17 /cm 2-s for r 1 , r 2 , and

Fr , respectively.

We see differences from the proportional cases discussed in Chapter V.

There, we had fluxes that were linear functions of r; here, F. and F 2 are

decidedly nonlinear in their overall behavior. In addition, the recombina-

tion-less CX case gives values at the edge of the discharge of 5x1015 and

5x1019 cm2/s for F, and F2 , respectively. The present calculation gives the

same value for F, ; from Equation 6-20, it is unaffected by the recombina-

tion. However, r 2 at the edge of the plasma is approximately 1% of the

value for the same source terms without recombination, and is even less

within the discharge. This is not surprising;, for this example, the losses

due to recombination (calculated on axis) are equal to S 2 (within 4 signifi-

cant digits). Recall the continuity equation for species 2:

v-r 2 = S2 - CENeN 2  (6-26)

IfS 2 -aNN 2 ,then V-F 2 = 0 . If we evaluate V.F at r = O using

L'Hospitale's rule, we find that F is given by F - (S2 - aNIN2 )r/2 . With no
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Figure 6-9. Fluxes with External Sources and High Recombination

recombination, we have r . S2 r/2 , which is a much larger value. Both

approximations are valid only in the immediate vicinity of the axis, but the

behavior they exhibit continues throughout the region where S 2 - aN1 N2 .

At the edge of the discharge, the rapid drop in N2 reduces the recombina-

tion which no longer offsets S2 and thereby produces a very large increase

in r 2. Even so, r 2 is still much less than it would have been without

recombination.

In Figure 6-10 we show the effect of increasing recombination clearly by

presenting a series of solutions with increasing recombination rates.

These are exactly the same solutions presented in Figure 6-8. We should

point out that the negative curvature of N2 discussed in conjunction with
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Figure 6-10. Radial Profiles of Recombining Ions for Recombination Rates
Ranging from 10-6 to 10-14 cm3/s in a 2-Torr Discharge

Figure 6-8 is difficult to distinguish in Figure 6-10. However, careful

examination of the data reveals that the results are indeed consistent with

Equation 6-23.

All the curves differ only in their recombination rate, which is one

order of magnitd smaller for each curve up the graph. The lowest curve,
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which has the largest recombination rate, is the same system as that

presented in Figure 6-7.

Here we can dearly see the effect of the recombination; as the recombi-

nation increases, the overall density drops, the profile becomes flatter, and

eventually the curvature in the center reverses. Note that the reduction in

N2 varies as ax2: as a changes by 100, N2 changes by approximately 10. A

simple explanation is that recombination goes as N2; a 10-fold change in

the number densities compensates for a 100-fold change in a.

In Figure 6-11 we show the ratio of the field with no recombination (Eo)

to the calculated electric field (E) for the case just examined. In both cases

we evaluate the field from Equation 6-1.

Note that there is a sizeable difference between the two fields, with Eo

greater than E throughout the discharge. This is to be expected. As we

discussed on several occasions, both in this chapter and previously, the

main effect of the ambipolar field is to counteract the diffusion term in the

electron flux, not the ion flux. With heavy recombination, the interior of the

discharge is dominated by volume losses, not diffusion. With electron

diffusion less important, the need for a field to counteract the diffusive flux

of the electrons is lessened. Near the edge of the discharge, where recom-

bination is becoming less of a factor, this situation changes. The discharge

is no longer dominated by recombination, and the field must increase to

reduce the electron flux. Indeed, this behavior is exactly what the graph

above depicts. At the edge, both fields approach infinity, but there ratio

approaches one. However, at the edge of the discharge, the ambipolar

model is no longer valid, and so the value of the field has little meaning.
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The reduction of the field due to recombination can also be seen from the

general expression for the field, given in Equation 6-1, and repeated here:

E =•- T.-kTDI (6-27)e Njk'Te + kTjý

By using the Einstein relation to express q/kT in terms of p/ID, and

noting the expression for Ne/.Dr from Equation 6-1, we can rewrite this as

E Di , M (6-28)p Ne

This expression describes the electric field as proportional to the

normalized gradient of the electron number density VN./N*. Note that as

we add recombination, we increase the volume loss per electron. There-

fore, to keep the total loans in the plasma equal to the total source term, we

must decrease the diffusion loss per electron. But the diffusion losses per
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elect on are proportional to VN.(N.. Therefore, from Equation 6-28, adding

recombination reduces the electric field.

Some of the features depicted in Figures 6-7 through 6-11 are related to

the somewhat artificial uniform external source term, not to the discrete

numerical method. In particular, note the sudden drcp in N 2 at the edge of

the plasma. This drop occurs over the last two calculation points in the

grid, and is just an extreme example of what occurs in systems with less

recombination. The constant source term is almost exactly matched by the

recombination term. If there were no boundary at all, the match would be

exact and the solution would be a spatially uniform value for N 2 . However,

this solution does not satisfy the boundary conditions. Eventually, the

presence of the boundary forces N 2 to zero, with a transition from a recom-

bination-dominated to a diffusion-dominated discharge. The larger the

recombination rate, the clo.er to the boundary this transition occurs. An

estimate of the transition point can be made by equating the recombination

frequency aNe to the effective diffusion loss frequency defined by DA/(Ax)2 ,

where Ax is the distance from the transition point to the edge of the dis-

charge. For the example given in Figure 6-7, tne dat. reveals that the

transition occurs at Ax on the order of 0.025 cm, or equivalently, r=4.975 cm.

At that point, aN. is 3.8x106 Hz, and D/.(Ax) 2 is 3.2x106 Hz. This is accept-

able agreement.

Nonproportionality. We wish to discuss the implications these

results have for the onset of nonproportionality. We will first discuss the

example described in Figures 6-7 through 6-11, concentrating on conclu-
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sions we can draw from that single case that are valid for a wide variety of

cases. We will then compare results from a number of different cases, with

the intent of drawing conclusions about the general relationship between

recombination and nonproportionality.

Let us quickly review proportionality. Proportionality is the property of

some multi-ion discharges that Ni = KiN* , for every ion species i. The

results of Chapter IV included the following necessary condition for

proportionality to hold:

= I (4-13)

We defined a measure Pi = (S/Se)/(ri/F'e) which describes how far each

species deviates from proportionality. A value of 1.0 indicates that the ion

flux fraction at the edge of the discharge is precisely what would occur in a

proportional discharge with the same values for the proportional source

terms. Other values indicate that the flux is different from the proportional

result by a ratio -i . Although Oi is not an ideal measure, it does provide a

consistent means of describing a variety of discharges.

Note the anomalies between our measures of nonproportionality and the

results of Figures 6-7 and 6-8. Recombination affects N2 much more

strongly than it does N 1 . Yet, 52 had a value very near to 1.0, indicating a

proportional system, and 01 was far from 1.0, indicating nonpropor-

tionality. The reason is the extremely high recombination rate in this

discharge, coupled with the large difference in source terms. Since S2 is

104 larger than S1 , S. is essentially equal to S 2 . Recombination reduces the
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net source for r 2 and therefore r 2 itself to essentially zero throughout most

of the discharge. However, N 2 and N. fall precipitously near the edge of the

discharge, reducing recombination and increasing the net source for r 2 .

As a result, F2 rises rapidly until F2 and F. are almost equal at the edge of

the plasma. Since 02 compares S2 and S. on axis to F2 and r. at the edge we

are left with 52 remaining close to 1.0. Effectively, we compare a ratio that

ignores recombination (S2/S. ) to one that is evaluated where recombination

affects both factors equally (F 2/F 0 ). The situation is different for 1i . F1 is

not directly affected by recombination anywhere; its continuity equation

contains only the uniform source term. (Note that the same cannot be said

for N 1 ; the momentum equation for each species contains the fluxes for all

the ion species.) Fr is affected by recombination everywhere. Thus, 01 is

comparing a ratio that is independent of recombination (S 1/S. ) to a ratio

where the two factors are affected differently by recombination (Fr/Fe).

Therefore, 01 is markedly changed as recombination losses competitive to

the diffusion losses are added.

This should not be construed as a failing in our measure of nonpropor-

tionality. Rather, it should alert us to the fact that "nonproportionality" is a

highly mutable concept. From Chapter IV, we note that proportionality

fails when we have source or loss terms that affect the different species by

different amounts. In Figures 6-7 and 6-8, we depict a system where

species 2 and the electrons have similar source terms, and therefore
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similar spatial dependence. Species 1, with its different source term, has a

different spatial dependence, and therefore demonstrates "nonproportion-

ality'. A sirgle evaluation of 0 is not sufficient to demonstrate proportion-

ality. Rather, both of the P parameters must be examined.

In spite of these considerations, note that in some sense a system such

as that described in Figures 6-7 through 6-11 can be said to approach a limit

of proportionality at both very high and very low recombination rates. For

no recombination, the system corresponds to the proportional solutions we

obtained as the CX case in Chapter IV, earlier. But consider the opposite

extreme, where recombination for N 2 is extremely high. There are two

contrasting possibilities.

First, we could have a source term for the recombining species large

enough to prevent it from vanishing from the discharge. This was the case

for Figures 6-7 through 6-11. Even though N2 undergoes an extremely high

recombination rate, its source is so high that its contribution dominates the

total electron source S.. The result, as we saw, is a value for 02 indicating

a proportional discharge, and one for 0i indicating a non-proportional

discharge.

For comparable source terms and high recombination of N2 , we find

that N2 will essentially vanish from most of the discharge. We then are left

with a single-ion plasma, which is trivially proportional if we consider only

the dominant non-recombining species NI. However, in such a case the

recombining species N2 would have a nonproportional profile.
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From such considerations we can see that a universal measure of

proportionality is difficult to define. As discussed above, 01 actually gave a

stronger indication of nonproportionality than P2 in a system where species

2 had a source so high that S2 and S. were essentially equal, but species 2

was also much more strongly affected by recombination. In that system the

sources and fluxes were both dominated by species 1. As a result, even

though recombination reduced F1, it was still so much larger than F2 at the

wall that it dominated, and 02 was close to 1. In a system where the source

terms are more closely equal, the reductions in F2 produced by recombina-

tion are more discernible, and 12 can give stronger indications of nonpro-

portionality than 11.

Because of situations such as this, it is important to define the propor-

tionality or nonproportionality of a system in terms of both species, not just

one.

Next, we wish to examine the correlation between the ratio of external

sources to on-axis recombination loss on the one hand, and the deviation

from proportionality on the other. Because of the widespread use of

proportionality to describe systems which are not strictly proportional, it is

worthwhile to examine this in more detail, by investigating a number of

systems where the only change is the amount of recombination. All the

systems investigated were at a pressure of 1.0 T, with a radius of 5.0 cm. All

parameters not mentioned specifically below were identical to the system in

Figure 6-7.
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In Figure 6-12 we show 1/1, and 02 as fumctions of aN 2N./S2 , which

measures the importance of the recombination term versus the external

source term for species 2. The source terms for both species were equal to

1017 /cm3s. We show 1/1l instead of 01 strictly for convenience; nonpropor-

tionality is indicated by deviation either above or below 1.0. Our choice of

11ol causes both measures to deviate in the same direction.
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Figure 6-12. Deviation from Proportionality As Recombination Increases,
Equal Sources

Figure 6-12 presents a system where P, and P2 give consistent measures

of nonproportionality. As the ratio zN2N./S2 increases so do both 1VIo and

P2 , indicating increasing nonproportionality. Note that 12 is always

slightly greater than V1ol. Without the perturbing effect of differing source

terms, the species that is directly involved in the recombination is the one

showing the greatest deviation from proportionality.
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In Figure 6-13 we show similar results for a case where the sources

terms differ. The "Nonequal Sources" cases had S 1 equal to 10 16 and s2

equal to 1017/cm, 3-s. All other parameters were identical to the previous

cases.
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Figure 6-13. Deviation from Proportionality As Recombination Increases,

Nonequal Sources

Again, as recombination increases, so does nonproportionality. How-

ever, now 1101 is larger than 52 . The effect of the nonequal sources is

changing the relative importance of the two measures. This is a milder

case of what we saw in Figures 6-7 to 6-11; even though species 2 is more

strongly affected by recombination, the difference in source terms masks

the effects on species 2, so that species 1 shows the most nonproportionality.

As we saw from the system shown in Figures 6-7 through 6-11, it is

possible for a system with widely differing sources to have at least one of the

O's nearly 1, even with recombination losses approximately equal to the

sources. Such cases arise when the recombining species (N2 , in this case)
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has a large enough source term that it would dominate the system, were it

not for the presence of the recombination. We are beginning to see that

effect here, for a system with sources more nearly equal.

Conclusions. Several conclusions can be drawn for recombining

plasmas maintained by external ionization sources:

1. In a multi-ion plasma with significant recombination present, if
the recombining species is not negligible, none of the densities will
have spatial profiles the same as those in a recombination-free
discharge.

2. If the ratio S2/a is small enough the particle density for the
recombining species will have a minimum at the center of the dis-
charge. Equation 6-23 gives a sufficient condition for this to occur.

< 1 (6-23)

oaN 2(Nl(l+e) - N2)

This can occur for fairly small values of a, as shown in Figure 6-8.

3. Measures of the deviation from proportionality give results that
are inherently dependent on the definition of the measurement
parameter. Therefore, it is imprudent to claim that a system
deviates little from proportionality unless the measurement is
defined.

External Sources plus Charge Transfer. For the case just finished,

we examined nonproportional systems arising from source terms that were

independent of charged species number density and loss terms that were

quadratic in number density. Now we will examine the nonproportional

systems that arise from the same source terms combined with a non-

resonant charge transfer term that is linear in charged species number

density. We saw an example of nonresonant charge transfer in the

comparisons to Wunderer, who used an external source and included

recombination, and to Schmidt, which used volume sources and included

recombination in one of the two sets of calculations. Here, we use a simpler
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uniform external source term than Wunderer's, and include no recombi-

nation. The choice of a simpler system enables us to distinguish the charge

transfer effects from effects such as recombination.

Under such conditions, the diffusion and continuity equations are

kTYriXaN___ =. r. +i _

ar Dj N. (kT. + kT)

kT. rJ
aNMe

ar kTe + kTi

ýF1. = S1 - vtN1 - rB (6-29)
a)r r

ar r

are= S2 + S, -

car r

where vt is the charge transfer frequency, and where the other quantities

retain the same definitions is in the recombination case.

The algorithm used to perform the calculations was the same that was

used to perform the recombination calculations; the input parameters were

changed to reflect no recombination, and to add charge transfer. The

actual charge transfer mechanism was based on associative charge

transfer, which requires a mediating background particle. This reaction

was chosen because it was appropriate for the N2+-N4÷ system used for the

comparison with Schmidt's experiments.
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For thee calculations, vt ranged from 0 to 7W107 Hz. We have assumed

the diffusion coefficient to be constant as vt changes. For this to be a valid

assumption, we must have vt much less that the momentum transfer

collision frequency for ions. For the diffusion coefficients (-100 cm 2/s), ion

temperatures (0.02585 eV), and hypothetical ion masses (-10 amu), the

momentum transfer collision frequency is on the order of several times 108

Hz or higher. Therefore, even at the highest values of vt , it is reasonable to

assume that the diffusion coefficient is independent of vt.

As was discussed in the introduction to the investigations of generic

plasmas, no claim is made that this system completely models a realistic

discharge. Nonetheless, the simplifications (constant kT. , constant kTi,

and so forth) allow concentration on the effects of charge transfer per se.

High Charge Transfer Example. In Figure 6-14 we show the

number densities for one particular case. This case was chosen because it

illustrated high nonproportionality. The input parameters for this case

were

1. Di = 3000 and D2 = 1000 cm /s.

2. Pressure was 0. 1 Torr.

3. The external sources were 1016 /cm 3-s for each species.

4. The charge transfer frequency was given by vt = 7x10' Hz.

5. The Debye length was - 4x104 cm.

6. The deviations from proportionality were given by 01 = 49.94 and
02 = 0.50505.
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Figure 6-14 Number Densities with High Charge Transfer Present

The charge transfer term is so large as to be essentially equal to the

external source term In fact, the charge transfer term on axis is .9997 of

the external source term for this case, and approaches 1.0 in the limit of

increasing charge transfer. This is not coincidence. Charge transfer for

N1 is much larger than diffusion, except near the edge. With the dominant

loss mechanism not being diffusion, there is no need for a density gradient.

Instead, the number density is controlled by the balance between source

and loss:

S1 = vtN1 (6-30)

This produces a value for N, of 1.44x10 12/cm 3, exactly the value shown

above. The only significant departure from the flat profile is near the edge,

at approximately 4.7 cm. As before, the presence of the boundary of the

plasma starts to affect the plasma, allowing diffusion to become significant

again.



N, is reduced almost to the point of extinction, compared to N 2 . As a

result, N 2 and N. are identical to within less than one part in 103 , except at

the very edge of the discharge. In fact, except near the edge, N2 and N.

have a functional dependence as if there were only one species in the

plasma, whose source was S1 + S2 . The profiles for species 2 and the

electrons agree with the Schottky profiles for such a source within an error

of considerably less than 1%. This contrasts with the recombination case,

where the effect of recombination on the electron source term affected N.

and kept any of the particle densities from attaining Bessel function

Schottky profiles. However, the very large charge transfer rates do not

affect the electrons, and thus produce a Schottky-like profile both for the

electrons and the dominant ion.

We did not find a spatial profile for any species that increased from the

center to the edge, for any of the charge transfer cases examined. This is

somewhat in contrast to the previous recombination case, where one

species (NO) rose on axis. Let us examine why. If we take the divergence of

the momentum equation for N1 , and then use the continuity equations to

evaluate the results, we can determine an expression for the curvature of

N 1 and evaluate it on axis. For N 1 to rise from on axis, that expression

must be greater than zero. From that condition, we derive the following

equivalent expressions:

6-70



(No (1+ e)- NI) I D2
Ni - ytll

(6-31)

N1 N2) S2 + vtNi)

Ni( Si - ytNi

These are analogous to the relations expressed in Equations 6-21 through

6-23. The related structure is clear. Just as in the Equation 6-21, we have

an inequality relating the ratio of the source terms to a quantity that is

nearly the ratio of the ion number densities. In the limit as v. goes to zero,

the right hand side of Equation 6-31 becomes the ratio N2/N1 for a propor-

tional system with uniform external sources. This ratio was discussed for

any proportional system in Chapter IV, and for the CX case in Chapter V.

The left hand side is always greater than N2/N 1 . Therefore, our conclusion

is that N1 does not increase at r = 0 for such proportional cases. This is in

agreement with the analytic solution we found for the CX case in Chapter

V.

We see no general conclusions that can be drawn at this time from

Equation 6-31, except to note that the spatial profile of N1 will rise if the

inequality is true when evaluated on axis. For the example depicted in

Figure 6-14, Equation 6-31 would require 2.24x104 < 2.22x10 4 . This, of

course, is not a valid relationship, and is consistent with our results, that

showed no rise in N1 as a function of increasing r.

Figure 6-15 shows the fluxes for the same case. Note that F1 demon-

strates the same nonproportionality (as defined in Chapters III and IV)
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Figure 6-15. Particle Fluxes with High Charge Transfer

that N1 demonstrated in Figure 6-14, and for much the same reasons.

Recall the continuity equation for r 1 :

8F-- = Si - vtNi - rI' (6-32)

ar r

For this example, S1 and v tNj were almost equal through most of the

discharge. Therefore, r, remained very small. Only at the edge, where N,

starts to decrease, does the net source become appreciable, allowing FI to

rise.

This near-equality of S1 and vtN1 also explains the nearly flat spatial

dependence we saw for N 1 . Consider the momentum equation for N1 :
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kTiX rj
a}N__i1= rl + N_, j D (6-33)

ar D1  N, (kT. + kT)(

The last term on the right hand side varies as 7F1/D, scaled roughly by

kT1/kT* and N 1/N. . Both these scaling factors are less than one. This

reduces the effect of this term and increases the relative effect of the first

term on the right hand side. In addition, as charge transfer reduces N 1 ,

N 1/N. reduces the second term even more. Therefore, the -f'1/Dl term has

the largest effect on N, . In this particular case, r17/D 1 is reduced almost to

zero, producing the flat density profile. Only at the edge where I-1/D1

becomes much larger do we see significant changes in N,.

We do not show the electric field. The reason we do not is that our

results show that it differed by less than 0.2% from the field produced with

no charge transfer at all. There is a simple explanation for this. This

discharge is so dominated by charge transfer as to appear as a simple

single ion, uniform external source system. Let us recall the electric field

for such a case from the CX case of Chapter V. The field in the small-e-

flux approximation is

E = kT.2r (6-34)
e(R2 - r2)

This is a field that depends only on position and the electron temperature.

(If we did not use the small-e-flux approximation, we would see a small

additional dependence on the. ion temperature.) For the same electron

temperature, all such systems have the same electric field. Thus, the field

for the present case is essentially identical to the field in the CX case and
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independent of all ion properties (to the extent that the small-e-flux approx-

imation is valid).

Finally, before we leave this example, we should note that we also made

calculations where we used a zero source term for N 2 , but with all other

parameters the same. The only significant difference was that N 2 and N.,

along with their corresponding current densities, were reduced by a factor

of 2. This is not unexpected; the charge transfer rate is so high that any

ions of species 1 that are created are immediately lost to produce ions of

species 2. Therefore, the total source for species 2 is S + S2. If we elimi-

nate S2 , we reduce the species 2 source by the appropriate amount; one

half, in this particular case.

Nonproportionality. Finally, we wish to discuss the onset of

proportionality, much as we did for the recombination case. In Figures

6-16 and 6-17 we show J31 and 1/42 as a function of the normalized charge

transfer term. As before, we show the reciprocal of one measure so that

both measures will vary in the same direction. The last point on the right

in each figure corresponds to the high charge transfer case just presented.

Nonproportionality steadily increases as the term producing the

nonproportionality increases. Initially 01 increases much more slowly

than 1/32 , but eventually reaches much higher values. Note that, for a

system with an infinite charge transfer rate from species 1 to species 2

(impossible, except as a limiting case), F1 at the edge of the discharge goes

to zero and r 2 goes to twice the value it would have with no charge transfer
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Figure 6-17. Deviation from Proportionality As
Charge Transfer Increases, Species 2

(for equal sources). Under those circumstances, 1V02 would be limited to a

value of 2 and 01 would become infinite.

Similarity Parameters. There is one last observation to make

about charge transfer. For certain combinations of plasma parameters,

6-75



two different discharges could have the same values for their spatial

profiles and for the quantities related to those profiles. As an example, we

will compare two discharges, one at 0.1 T, and the other at 1 T. The

following values, which determine plasma conditions, were the same for

both discharges:

1. Sk/p, where k represents either ion species, or the electrons and p

is the pressure.

2. vtNI/Si.

With these inputs to the model, we found the following output parame-

ters to be the same for both discharges:

1. 01.

2. 0.

3. EE.

4. Spatial dependence of the various fluxes.

Although the particle fluxes had the same position dependence for both

species, they differed by a factor of 10 in magnitude (i. e., F/p was invari-

ant). This is in accordance with the model, which predicts that the fluxes

should scale linearly with net source (see Equation 6-1); the source terms

for the two discharges also differed by a factor of 10. (This was due to the

10:1 pressure ratio of the two discharges.) The number densities also had

the same position dependence, but differed by a factor of 100. Equation 6-1

indicates that the number densities scale by r/D. For these discharges, the

pressure difference caused the diffusion coefficients to differ by a factor of
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10. In conjunction with the scaling of the fluxes, the model predicts a

change by a total factor of 100.

We can draw the following conclusions from these observations:

1. Discharges at different pressures, whose external sources are
proportional to the pressure, and whose ratios of charge transfer to
external source for the losing species are identical, will have the
same spatial dependence, with all that implies for nonproportion-
ality, field, and so forth.

2. Discharges that are driven by external sources, and undergo
charge transfer as their only volume kinetic reaction, scale the same
as discharges with the same sources, but no charge transfer. That is
to say, the flux densities will scale as the external source, and the
particle densities will scale as the source divided by the diffusion
coefficients.

In practice, of course, it would be very difficult to find discharges satisfying

these constraints. However, the existence of these relationships forms a

useful validation for theoretical analyses. For instance, any numerical

model would have to satisfy these constraints. This provides a useful tool

for verification of the numerical method.

Summary of Charge Transfer Results. To summarize the results

for the charge transfer case:

1. As the level of charge transfer is increased, some parameters of
the system becomes more non-proportional, either in the absolute
sense or in the sense of deviating more from the values found with no
charge transfer. In particular, those parameters which depend on a
single ion species, such as the spatial profiles of the individual
fluxes, are more likely to display these effects than parameters that
depend on more than one species, such as the field.

2. At extreme levels of charge transfer, some parameters of the dis-
charge act as if it were a single-ion discharge, whose source is equal
to the total source for both ions. In particular, those parameters that
depend on the electrons, as opposed to the individual ion species, are
more likely to take the values appropriate for single ion Schottky
cases. The electric field in particular displays such behavior.
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3. The parameters Sk/p and vrNI/Si serve somewhat as similarity
parameters; any two discharges for which these are equal will have
similar spatial dependencies.

4. At no time did we find cases where any of the particle densities
increased from the center of the discharge. It is possible to deter-
mine tests to see if such increases will occur, but we drew no
conclusions about whether such conditions could hold.

Volume Sources. Next, we will investigate one example of a volume

sources of ionization, in addition to the various examples addressed while

verifying the model. This example examines the effects of recombination in

volume source discharges. The discharge chosen has volume sources

proportional to N.. We will not examine charge transfer. Since both

charge transfer and the volume source term depend linearly on the number

densities, the results for that system in cylindrical geometry are propor-

tional analytic solutions analogous to those discussed in Chapter V as the

PT case.

Volume Source plus Recombination. For this case, the momentum

and continuity equations become:
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a r + N.
ar DiNo (kTo + M~j

kTj I rj
a)Ne JA

ar kTe + kTi

E- IN r (6Z3)

ar r

We chse prameers hat orrepond rogltoa1/0mtuef

=r -(V + VON. - aN2 N.-

-- v r

We chose parameters that correspond roughly to a 10/90 mixture of

helium (Nt) and neon (N2), although with no pretense that we are model-

ling that system. With the predominance of the background gas being the

species with the higher ionization frequency (N2 in this case), we could thus

ensure that only one species would undergo significant recombination. We

chose D 1 and D 2 as 100 and 400 cm 2/s, and determined v 1 and v 2 partly by

the relative fraction of each gas, and partly by the characteristics of the gas

species itself, to be 10.20 and 10-18 times the total background gas number

density. All four parameters were input with values appropriate for p = 1 T

and kT. = 1 eV. These values are of the same order as the values for

unmixed helium or neon discharges, but are otherwise chosen purely for

convenience. We chose values of a between 0 and 10 - cm 3/s. Although

the latter value was considerably more recombination than typical in a real

gas, the range was chosen to demonstrate the effects of the recombination.
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Pressures ranged from 1.0 to 5.0 T. As before, the radius of the discharge

was chosen as 5.0 cm.

In the external ionization case, the presence of a source term that was

independent of the conditions in the plasma determined a particular value

for the on-axis number densities. The lack of an external ionization source

changed the nature of the problem significantly. As was discussed in the

comparable PS and CS analytic cases in the previous chapter, the removal

of the external source, combined with boundary conditions of the fluxes

being zero on axis and the densities being zero at the discharge edge, allows

only trivial solutions unless the electron temperature is fixed at a particu-

lar value. For the PS and CS cases, an explicit analytic eigencondition fixed

kT.. This eigencondition was based on the additional constraint that Ne be

non-zero at at least one point, with that point being chosen r = 0 for conve-

nience. A similar constraint leads to eigenvalues for the volume source

with recombination case, as well. We established that constraint by normal-

izing all the densities and current densities in the system by dividing by the

electron density on axis, N.o. This normalization produced an additional

constraint on the normalized N., which acted as an additional boundary

condition:

NJO) = 1.0 (6-36)

Neo

Algorithmically, the additional boundary condition requires an additional

differential equation and dependent variable in the numerical system. kTe

became the additional dependent variable, with a derivative identically zero.

The result was a system of five differential equations: the momentum

equations for N 2 and N. and continuity equations for the ions, as described
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in Equation 6-35, plus the trivial equation AkT./•r = 0. The five boundary

conditions were N(R) = 0 and I(0) = 0 for the appropriate species, plus

Equation 6-36.

In such a system, it is necessary to have some mechanism to allow the

system to respond to changes in the eigenvalue. Otherwise, there is no

coupling between the plasma conditions and the eigenvalue. In this

calculation there were several such mechanisms. First, kT. enters directly

into the momentum equations. Second, the ionization frequencies and

recombination rate were realistic functions of kT.. Details of this modelling

will be left to Appendices C and D, which document all the numerical

algorithms used.

The normalization produced an additional input parameter, the actual

on-axis electron number density, NOo. In a real discharge, N. 0 would be

fixed by the energy balance in the system. For instance, in a glow dis-

charge, the external circuit parameters fix the longitudinal current. That

current, along with the diffusion losses, then fixes No. Energy balance is

not included in this model. Therefore, Neo becomes a free parameter and

was allowed this to range from 10 10 to 1012 cm-3. This range was chosen in

conjunction with the pressures mentioned earlier. The upper value was

chosen somewhat arbitrarily; we feel that 1012 was high enough to demon-

strate the effects we wished to examine, and was at the upper end of

densities that can be realistically considered as weakly ionized. At higher

densities, Coulomb collisions start to become significant, and the weakly

ionized nature of the discharge is lost. For instance, from Mitchner and

Kruger, we calculate that a 1 T, 1 eV hydrogen plasma can no longer be
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considered weakly ionized for electron densities greater than 1014 /cM 3

(Mitchner and Kruger, 1973:60). Since we wished to stay well into the

weakly ionized regime, we used 1012/cm 3. The lower limit of N. 0 was

chosen because, even at the maximum pressure and a used, any lower Neo

would have produced no discernible recombination. Such cases can be

modelled by the solutions of the previous chapter, and need not be examined

here.

High-Recombination Example. At this point, we shall present an

example, with the parameters shown:

1. D1 and D 2 were 100 and 400 cm 2/s.

2. Pressure was 1.0 T.

12 .33. N.(0) was 10 cm"

4. a was 10"5 Nbg cm 3/s, with Nbg the number density of the back-
ground gas.

5. The ionization frequencies v, and V2 were given by 10'20 Nbg and
10"18 Nbg Hz, at an electron temperature of 1 eV. The program
adjusted the frequencies to account for the actual value of kT..

6. The program calculated a value of kT, = 2.66 eV.

7. The value calculated for 01 was 0.0939, and for 51 , 2.68.

8. The Debye length was 1.2x10- cm.

The densities are shown in Figure 6-18. Note that N 2 has an almost flat

density profile. The reason is that the recombination term is so large as to

dominate the diffusion term. In other words, there is enough recombina-

tion to eliminate most of the ions produced in the volume of the plasma.

Note also that N2 does not rise toward the edge of the discharge. This is
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Figure 6-18. N versus r, Maximum Recombination

contrary to the results we found for the external source term, but consistent

with the results we saw for the external source-charge transfer case.

Recall Equation 6-21, which gave a condition for N 2 increasing on axis

for the external source-recombination case:

eN6 + N < DI (6-21)
N2  $2. -

D2 D 2

A similar derivation can be used to find the condition for N2 increasing on

axis for the volume source-recombination case:

VI
ENe + N, < D1 (6-37)

N2  -2 -tN2
D2 D2

For the parameters of our example, the left hand side of Equation 6-37

yields 65.8, whereas the right hand side yields 64.97. Thus, the condition is

not satisfied. This is in agreement with our observation that N1 steadily
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decreased from the center to the edge of the discharge, and is similar to the

results of the external source-charge transfer case. There appears to be no

reason why rising profiles could occur for sufficiently high a's. However,

in the present investigation this effect only appeared in the external source-

recombination cases. Shortly, we will discuss this effect in the context of all

three cases presented.

Finally, we note that N1 and N. have profiles within 1-2% of the Schottky

Bessel function profile. This is caused by the extremely high recombination

eliminating one species from the discharge. This is not to say, however,

that the entire discharge can be modeled by the Schottky profiles. N 2 is so

reduced that it might be thought that one could approximate this discharge

as having only one ion species. However, the various fluxes shown in

Figure 6-19 negate any such claim, and show the importance of a complete

analysis to compare with wall sampling measurements.

3-
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Figure 6-19. Particle Fluxes for High Recombination and Volume Sources
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Note that r 2 at the edge of the discharge is approximately 1/2 r 1, The

implication is that both species are playing a significant role in discharge,

and must be taken into account. This is in dramatic contrast to Figure 6-18.

For instance, even though the number densities would imply that this

might be approximated as a single ion discharge, measurements of the

fluxes at the wall would clearly show two ionic species.

Figure 6-18 indicates that N 2 can be neglected in describing the dis-

charge, while FIgure 6-19 indicates that it clearly plays a significant role.

This dichotomy is explainable by the present model. Note that N 2 is

approximately N1/50. In the central region of the plasma, aN 2/ar is

approximately zero. In that case, the momentum equation for N2 produces

rZN(D I)2 (6.38)
D2  Ne (1+C)

If we solve this equation for r 2 , we find

r2= N2 rl (6-39)
Ni + ENe Di

If we evaluate this for the values of the example, we find F1/F2 1 = 11.2. In

comparison, the value of r 1/r 2 calculated directly from the fluxes produced

by the numrnrical solution at r = 2.5 cm was 12.1.

Electron Temperature versus Recombination. Finally, let us

examine the parameterization of electron temperature as a function of the

strength of tL:e recombination losses, based on data extracted from the full

range of cases examined, not just the extreme example presented in

Figures 6-18 and 6-19. We chose to examine the electron temperature
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because it depends on the overall response of the plasma to changing

conditions, not just on the response of a single species.

We compared the multi-ion temperatures with results from a Galerkin

approximation from Belousova (Belousova, 1968). Belousova examined

cylindrical single-ion plasmas with single-step volume ionization, recom-

bination, and stepwise ionization. The following diffusion equation results:

_ý y P-aG 2 _2 0 (6-40)

where y = N/NO, N is the electron density, x = r/R, R is the discharge radius,

v is the ionization frequency, P is the coefficient for stepwise ionization, a is

the recombination coefficient, and Da is the ambipolar diffusion coefficient.

Belousova used a form of the Galerkin method equivalent to assuming that

the solution to this equation could be approximated in terms of a series of

orthogonal functions, the first of which was = cos(ncx/2). The next func-

tion in the series must be orthogonal to 0, which implies that the left hand

side of Equation 6-40 with y replaced by 0 must be orthogonal to 0 as well

(Belousova, 1968: 337). From this Belousova developed the following

relationship:
vR2 = 5.830- 0.734 a) NoR 2  (6-41)

Da Da

We used this relationship to calculate the temperature of the system, with

the stepwise ionization coefficient j3 set to zero.

Before we compare Belousova's results to our multi-ion calculations, we

should note the limitations of Equation 6-41. That equation is derived in
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part from an assumption that the form of the solutions is expressed

accurately by trigonometric functions, needing only a first-order correction

to produce valid results. As we have already seen, this is a poor assump-

tion for high recombination rates. As a result, we view with reservations

the exact values of the electron temperature that Equation 6-41 produces for

large values of aNo. Rather, we use the comparison to indicate the trend as

aNo increases.

We compared BelouL.va's results to calculations for systems identical

with those presented in Figures 6-18 and 6-19, but with a changed to vary

aNo. We used the values appropriate to the recombining gas to perform

the single-ion calculations. This is equivalent to assuming that the

recombining ion was the only species present. As was true in the case

displayed in Figures 6-18 and 6-19, the ionization frequency and recombina-

tion rate for both calculations were functions of kTe, with the ionization

frequency given by von Engel's Equation 11-9, and with the recombination

rate having the kTe"1.5 dependence appropriate to radiative recombination

(von Engel, 1965: 164, 293). We included recombination ranging from

Neo = 0 to aNeo = 107 Hz, even though this is beyond the range of validity

for Belousova's model. This was done to demonstrate the behavior of the

temperature in a multi-ion discharge in the limit of high recombination,

and to depict the nature of the errors that Belousova's model gives when

applied outside its region of validity. We should note that many gases have

radiative recombination rate coefficients on the order of 10.7 to 10.6 cm -s or
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slightly higher (von Engel, 1965: 166). Under those circumstances, a value

for czN.o of 105 is a conservative estimate of the value achievable in real

systems. The higher values of this investigation allowed us to look at

limiting cases.

Figure 6-20 compares the electron temperatures calculated from

Belousova's model to those calculated using a full multi-ion calculation. In

both cases, the temperatures are normalized by the values calculated for no

recombination. These values were 2.275 and 2.23 eV for the single-ion and

multi-ion calculations, respectively. We attribute the small difference to the

approximate nature of Belousova's model; it reproduces the Schottky

eigencondition within only 0.5% of the Schottky results for the recombina-

tion-free case (Belousova, 1968:337). We used normalized values to mini-

mize the effects of these differences. We also include the result of an exact

single-ion calculation using the only the first ion species, which does not

undergo recombination. The electron temperature produced, 2.67 eV, was

normalized by the multi-ion value of 2.23 eV to indicate the limit as the

recombining species is eliminated from the discharge.

Figure 6-20 demonstrates the overall behavior expected in any recombin-

ing discharge. Increasing recombination implies higher losses, which

implies a higher electron temperature to produce more ionization. Howev-

er, the presence of the second ion changes the limiting behavior of the

system. In contrast to the single-ion model, which increases steadily as

the recombination rate increases, the multi-ion model saturates at a limit

of 2.67 eV, which is the value that would result if the second ion were not

present at all.
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Figure 6-20. Effect of Increasing Recombination on Electron Temperature

for Single and Multi-Ion Models

Let us examine the approach to that limit. With no recombination

present, the single-ion model produces a temperature within 2% of that of

the multi-ion model. The ratio of ionization frequency to diffusion coeffi-

cient v/D for the second species is larger by a factor of 25 than that of the

first species. Thus, the second species controls the discharge, producing

temperatures very close to what Belousova's single-ion expression gives.

For small amounts of recombination, the two calculations remain in

reasonably close agreement. Even at aNeo = 104 Hz, the two are in fairly

close agreement, with Belousova's value being 2.33 eV versus 2.27 eV. For

this level of recombination, the ratio of the net source to diffusion coefficient

for the second species is still over three times vWD for the first species.
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Therefore, the second species still has the largest influence on the electron

temperature. By the time we reach aNe0 = 105 Hz, the situation has

changed. Now, the net source to diffusion ratio for the second species is

less than the corresponding ratio v/D for the first species. As a result, the

temperature is controlled more by the first species than the second, and the

single-ion and multi-ion values diverge. At this point, the value for oLN.o is

still achievable in realistic discharges. Belousova's model may or may not

be valid, due to the approximations discussed above. Belousova's model

produces a temperature of 2.58 eV in contrast with the multi-ion value of

2.42 eV. As recombination in the multi-ion system increases, species 2

plays even less of a part in the determination of the electron temperature,

and the temperature is now controlled by species 1, which undergoes no

recombination. Eventually, the temperature saturates at 2.67 eV. For the

single-ion case, it is no longer clear that Belousova's model is still valid. In

any case, since species 2 is the only ion is the system, the temperature must

rise dramatically to compensate for the increased recombination losses of

species 2.

From this investigation, we conclude that a single-ion model such as

Belousova's can give reasonably accurate values for the electron tempera-

ture, as long as the recombining ion species is the dominant species in the

plasma.

Deviations from Proportionality. In Figure 6-21 we show 1V1o as a

function of aN.o , at a pressure of 1 T. We show 1/Vo instead of P1 in order to

maintain a consistent standard of higher values implying more nonpropor-
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tionality. The results are consistent with our results for other cases; as the

nonlinear term increases, so does nonproportionality. Similar results are

obtained at other pressures.

U
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3-

ID 14 0 107
aN, (Hz)

Figure 6-21. Deviation From Proportionality versus Recombination; 1 T

In Figure 6-22 we show 02 as a function of aN. 0 , at a pressure of 1 T.

These results are also completely consistent with what we observed in the

external source cases. Again, similar results obtain at other pressures.

Conclusions. Let us now restate the conclusions we reached for

the case of volume sources with recombination.

1. Although sufficient recombination can cause the number densi-
ties to appear as if the discharge contained only a single species, it is
still possible for the fluxes of both species to be significant.

2. As in the external source cases, the ion species with a volume loss
term assumes a relatively flat profile if the losses are high enough.
However, unlike the external source-recombination case, we never
saw the densities increasing from the center to the edge of the
discharge. We were able to determine a condition to indicate when (if
ever) such a rise would occur, but were unable to determine if it could
be satisfied.
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Figure 6-22. Deviation From Proportionality versus Recombination; iT

3. As is the case for single ion diffusion with recombination, the electron
temperature scaled in a manner reflecting the changes in the losses as
recombination or pressure changed. As recombination increased or
pressure decreased, the losses to recombination or diffusion, respectively,
increased. These increased losses required increased ionization, implying
higher electron temperatures.

General Result. All three of the investigations of generic plasmas

presented criteria for existence of an off-axis maximum in ion density.

Those criteria can be generalized to a form that is applicable for the

cylindrical geometries examined here and planar and spherical geometries

in addition. In fact, the derivation is geometry-independent, except that the

geometry chosen must lead to y and Vn being zero at the center of the

discharge. The dimensionless form of the system will be used, to simplify

the derivation.

The dimensionless momentum and continuity equations for some ionic

species i are
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vn=~+~~1+ E (6-40)

V "j=si

Here, si is the most general form of the dimensionless source term,

including both external and volume sources. Taking the divergence of the

momentum equation:

V2ni=.V.- + Vni j
r• n 1+E

Vnoni j (6.41)
(n.)2 1+E
Z v .~v.i.

+ n i.
n. 1+

At the center of the discharge , Vn and y are both zero. Evaluating

Equation 6-41 on axis, and replacing V " with sk, produces the following

expression for V2 n:

Xs--se
V2 ni = _s, + n i J(6-42)n. 1+E

Since Vni is zero at the axis, 2nj/ip 2 can be expressed in terms of V2ni at

p = 0 for planar, cylindrical, or spherical geometries:

V =n an1  (643)
(1+m) ap2

The index m is 0, 1, or 2 in planar, cylindrical, or spherical geometries.

Since 1+m > 0, for ni to have a positive curvature and thus be increasing at
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0, V2 ni must be greater than zero. Setting V2 ni = 0 and rearranging

Equation 6-42 produces

£n.+xnj IXsj-s.
jii <j*i (6-44)

ni Si

Or, for two ion species:

en +nj sj-so (6-4 )
Di7 Si

Finally, invoking the small-e-flux approximation produces a condition that,

if met, implies that ni will rise to an off-axis maximum:

(l+E)n.,-ni , s8 (6-46)
ni si

This is the form that led to Equations 6-21, 6-31, and 6-38. We should note

the differences in the form of the right hand side of Equation 6-21 versus

Equations 6-31 and 5-38. Equivalent to Equation 6-21, which dealt with

recombination and external sources, we have

(1+e)n. - n2 < (6-47)
H2 " S2 - a 2n2ne

For Equation 6-31, which dealt with external sources and charge transfer,

we find the equivalent dimensionless form is

(1+e n.- n < 82 +4 2 n (6-48)

ni sl - fEini

Here, fci represents the dimensionless charge transfer frequency for the

source term for species i. Finally, for Equation 6-38, which dealt with

volume sources and recombination, we find

(1+e)ne -n2 < f, (649)
n2 f2 - a2n2

6-94



Equations 6-47, 6-48, and 6-49 differ only in their right hand sides. The

left hand sides are identical except for a trivial reindexing of species. In

Equation 6-47, which describes the only case where we saw positive curva-

ture, all terms are either independent of number density or have a quadrat-

ic dependence on the number density. In Equations 648 and 6-49, the terms

that depend on number density vary linearly, not quadratically.

We were unable to determine if the conditions of Equation 6-46 could be

achieved in real discharges. The value of aN.0 required to produce the

effect shown in Figure 6-7 is 8.6x106 Hz, and corresponds to a recombina-

tion rate coefficient of the order of 10'5 cm 3/s, even at an electron number

density of 10 12/cm -s. Such high values are difficult to achieve simulta-

neously in a discharge. In addition, if the effect could be achieved, it might

be difficult to detect. At present, we can but point out the possibility of an off-

axis maximum being observed in real discharges.

Summary of Results

At this time we will summarize the results of this chapter. We will do

so in the same order as the material was presented in the chapter itself;

first the results of the verifications, then new results from our investigation

of quasi-realistic gases. In most cases this summary will be an abbreviated

version of what was presented in the chapter. However, there will be

occasions where we will collect results of several investigations and form a

more general conclusion.

Comparisons. In general, we found that the results our new model

produced were consistent with previous experimental and theoretical
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investigations. In all cases the differences, if any, either could be ascribed

to features of the system we chose not to model, or to experimental error.

Our model produced extremely close agreement with Wunderer's

results, and in considerably fewer calculations. Wunderer used an

ambipolar model based on Schottky's assumptions of quasi-neutrality and

congruence. That is a different starting point than the present model, and

leads to significantly different differential equations. In addition, the

geometry and kinetics of the calculation were fairly complicated. Under

those circumstances, it is unlikely that two different calculations could

fortuitously produce the same results. Therefore, we conclude that both

models correctly describe the physical situation, within the constraints

imposed by the assumptions implicit in the models.

Our model also produces exact agreement with Young's electron

temperature calculations and with the experimental measurements of

Labuda and Gordon, for He-Ne mixtures ranging from pure helium to pure

neon. Although the results of the two calculations are the same, the

process used to arrive at them is different. It appears that the model Young

used was based on assuming proportionality in the discharge. In the

present case the assumption of proportionality was not required. In fact,

the same algorithm that was used for the Young comparisons was also

used throughout the numerical research to calculate complete solutions to

highly nonproportional systems, including calculations of the electron

temperature.

Finally, we were able to use our model to develop a simplified description

of Schmidt's contaminated nitrogen discharge. We were able to predict the
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overall behavior of Schmidt's discharge with a very simple N2+-N4 + model.

The results of that model revealed discrepancies between the model's

description of the relationship between electron fluxes and temperature and

Schmidt's measurements of the same quantities. We were able to provide a

reasonable explanation of the discrepancies by showing that even small

amounts of H 2 led to a system that was dominated by HN 2 + produced by

charge transfer from N2 ÷.

General Plasma Systems. Next we wish to summarize the results that

our investigations of three quasi-realistic plasmas produced. We will first

discuss general conclusions that can be drawn for all three investigations,

and then summarize individual results.

We found a general relationship that established conditions for the

occurrence of off-axis maxima in an ion density:

n.+.sXnj Isj-s,
j*i j*i (6-44)

ni s

We found this relationship satisfied for one system, that of external

ionization with extreme recombination. In this system we observed off-axis

maxima for conditions consistent with Equation 6-44. In no other systems

was Equation 6-44 satisfied, nor were off-axis maxima observed in any other

systems. We were unable to determine if Equation 6-44 could be satisfied for

a realistic discharge, or if any maximum that resulted would be detectible.

The relationship between nonproportionality and magnitude of the

"nonproportional" source terms was similar for all three cases; the more

the nonproportional source term, the more nonproportional the system was

by at least one measure. There were cases where one ion density was
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proportional, but the fluxes and the system as a whole were not. This

illustrates the difficulties in determining a consistent, all-encompassing

measure of proportionality. Quantitative measures of nonproportionality

are very situation-specific. We used a single set of measures for all three

cases, to provide a common ground for comparison. In practice, it would be

more beneficial to tailor measures to the specific system being examined.

For the external source-charge transfer example, we found that the

parameters Sk/p and vN 1/S1 serve somewhat as similarity parameters; any

two discharges for which these are equal will have the same spatial

dependencies. For sufficient charge transfer, the discharge acts as a single

ion discharge, in that the electron and dominant ion parameters were the

same as those of a single ion discharge whose ion source term was equal to

the total ion source term of the actual system, and in that the second in was

almost completely eliminated from the discharge. However, the spatial

dependencies of the particle density and flux of the minority ion could not be

described by the Schottky solutions.

For the system involving volume source terms and recombination we

saw a significant difference in the behavior of the fluxes from the charge

transfer case; even if the particle densities were dominated by a single ion,

the fluxes for both species could still be significant. The fluxes could

decrease near the edge of the plasma, confirming the similar result that

the JI Schottky solutions produce. Finally, the electron temperature

behaved predictably and in accordance with single-ion diffusion theory; as

pressure decreased or recombination increased, the electron temperature
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increased so that higher ionization rates could offset the increased diffusion

or recombination losses.
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VII. Conclusions and Recommendations

Introduction

This research has presented a new approach and model for multi-ion

ambipolar diffusion. The model provided a number of individual results,

including analytic solutions for some systems, numerical solutions that

expanded on previous experimental or numerical results, information

about scaling in multi-ion systems, and the effects of minority gases in a

discharge. Those individual results allow the synthesis of an important

result; criteria now exist for determining when multi-ion ambipolar

diffusion discharges may be adequately described using single-ion models,

when proportional multi-ion models may be used, and when full nonpro-

portional multi-ion models must be used.

This chapter provides those criteria in the form of decision trees that

guide the process of determining the lcvel of dctail required to describe

multi-ion ambipolar diffusion discharges. It also summarizes the contri-

butions to research in multi-ion discharges made by this investigation and

provides recommendations for future research in multi-ion discharges. It

emphasizes the new results, and only discusses previous research in the

context of comparison to the new results. The discussion of the criteria is

presented and then followed by a discussion of the resolution of the problem

s initially identified in Chapter II. Suggestions for future directions of

research come last.
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Regime of Validity of Ambipolar Diffusion

Forrest and Franklin addressed the topic of the validity of various

plasma models, including ambipolar diffusion, in great detail (Forrest and

Franklin, 1968). They described cylindrical plasma discharges in terms of

two dimensionless parameters, which they used to identify the transitions

between the various regimes pertinent to plasma discharges.

Because of their need to describe a wide variety of discharges, Forrest

and Franklin's two parameters are functions of a number of characteristic

plasma values, including ion mass, electron temperature, ionization

frequency, ion mean free path for collision, electron Debye length, and ion

mobility. However, for our purposes the important points are the physical

transitions: from free-fall to collisional plasmas, and from free diffusion to

ambipolar diffusion. Forrest and Franklin point out that the transition

between free-fall and collision-dominated plasmas starts when the dis-

charge radius is equal to the mean free path for collision (Forrest and

Franklin, 1968: 1362). They also imply that the corresponding transition

from ambipolar to free diffusion has occurred when the Debye length is

comparable to the discharge radius (Forrest and Franklin, 1968: 1361-1362).

In both cases, they note that the boundaries "cannot be defined uniquely

and with precision" (Forrest and Franklin, 1968: 1361).

If we generalize Forrest and _-'Iranklin's results to arbitrary geometries

by defining a characteristic physical scale length A, we obtain two condi-

tions:

1. The mean free path for collision for each species must be consid-
erably smaller than the smallest characteristic dimension of the
plasma:
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«.4 <<A (7-1)

2. The Debye length must also be considerably smaller than the
smallest characteristic dimension of the plasma:

XD << A (7-2)

where A can be expressed in terms of a physical length in the discharge.

The first constraint ensures that diffusion is valid to describe the

plasma. It is necessary whether or not an ambipolar model is dsed. The

second constraint ensures that the charged particle number density is high

enough that the fields produced by the plasma itself are strong enough to

affect the motion of the particles. At low charged particle densities, the

diffusion is a free diffusion process. If the second constraint is met, the

diffusion process is ambipolar diffusion.

A further condition used in this research is that the change in species

temperature across the discharge must be small. This condition is the

result of neglecting the NVkT term that arises from expressing the gradi-

ent of the charged particle species pressure in terms of V(kTN) when

developing the momentum equation. The question of spatial temperature

variation has been addressed by previous authors. Cohen and Whitman,

who address volume ionization, recombination, and thermal energy

balance in the positive column of a single-ion plasma, also give a review of

prcvious efforts in this area (Cohen and Whitman, 1973). Rather than

completely investigate the effects of thermal gradients in this work, we

point out that for any species (charged or neutral) the neglect of NVkT is

valid if (kT(O) - kT(l))/<kT> is much less than one, where <kT> is the
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average value of kT(r). The validity of this assumption depends very

strongly on the details of the gas species kinetics and boundary conditions,

since the gas kinetics affect the transfer of energy from the electrons to the

neutrals and the boundary conditions describe the influence of the dis-

charge walls on the temperature of the discharge. Thus, it is impractical to

draw conclusions about the validity of this neglect without addressing a

specific system. However, we can point out that the ýemperature gradient

is controlled by the ratio of two quantities:

VT jccE (7-3)

where j.E is the total thermal energy deposited into the plasma, and K is

the thermal conductivity. For convenience, we can consider j to be fixed (as

it often is in glow discharges). In that case, the magnitude of the electric

field is determined by how much of the energy the electrons gain from the

field is applied to ionization. For instance, consider a species with large

cross-sections for excitation. The excitation extracts a significant fraction of

the total discharge energy to populate the corresponding excited states. This

energy is not available to produce ionization, and the ionization is less

efficient. Examples include molecular gases, with low-lying vibrational

and rotational states. Such gases typically require higher fields, and

therefore have higher Joule heating, than atomic gases. The rate at which

energy is removed from the plasma is controlled by the thermal conductivi-

ty of the gaR, with boundary condition effects as well. As an example, a

discharge in a molecular gas of low thermal conductivity, with walls

maintained at a fixed temperature by a cooling water jacket, is a good
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candidate for significant temperature gradients. On the other hand, a

discharge in an atomic gas of high thermal conductivity, in a vessel with

insulated walls, is less likely to have significant temperature gradients.

No further conditions are necessary for the model developed in this

research to be valid; in the general form presented in Equation 3-7 the

present model holds wherever any other single-ion or multi-ion ambipolar

diffusion model of a uniform-temperature plasma is valid. Examples can

be drawn from laboratory plasmas, lighting discharges, plasma processing

reactors, and electric discharge lasers.

To determine whether a particular system can be described by an

ambipolar diffusion model requires evaluation of the Equations 7-1 and 7-2

in terms of quantities that are experimentally accessible. In general,

Equation 7-1 can be evaluated by considering the product pL of the pressure

and plasma physical size. The mean free path for collision is given by

X = 1/aNbg, where Y is the total cross-section for collision, and Nbg is the

background gas pressure. The pressure is given by p = NbgkTbg, producing

the following relationship equivalent to Equation 7-1:

pL. >> J (7-4)
a

For typical gases, a is on the order of 10-15 cm2 for both ions and electrons

(Mitchner and Kruger, 1973:102-110). Using a value on the order of 300*K

for the background gas temperature allows evaluation of Equation 7-4:

pL >> 0.3T-mm (7-5)

Equation 7-2 can also be evaluated. The electron Debye length is
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XD= - • - (7-6)

With this definition, Equation 7-2 can be re-written:

NL2 >> »OWT (7-7)
e2

Using a value of kT* = 1 eV, which was shown in this research to be a

typical measure of the electron temperature for many plasmas, produces

the following constraint:

NO >> 5.5xlO5/cm (7-8)

Equations 7-5 and 7-8 can be met for a variety of systems. For instance,

consider a one cm diameter discharge plasma. Evaluation of Equation 7-5

indicates that the two sides of the expression are equal at a pressure of 0.06

Torr, implying the validity of a collisional description in this geometry for

pressures much greater. For the same discharge, expressing Equation 7-8

as an equality produces a lower bound at an electron density of 2.2x106/cm3.

This implies ambipolarity for fractional ionizations N./Nbg down to a lower

limit of 10"9, for the lower bound pressure of 0.06 Torr. Both Equations 7-5

and 7-8 are easily met in typical laboratory plasmas, as well in other

systems (Mitchner and Kruger, 1973: 56. Chen, 1984: 12-14. von Engel,

1965:241).

Criteria for Determining an Appropriate Multi-Ion Model

Having established the conditions under which ambipolar diffusion is

valid, it remains to determine how complex a model must be used for an

adequate description of a particular system. The results of this research

provide the criteria necessary to make such a determination. Evaluation of
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the criteria requires knowledge of the specific system being investigated.

Such knowledge might be available from experimental results or from

previous calculations. In the absence of the information necessary to

evaluate a particular effect, it would be necessary to assume the effect to be

significant.

Figures 7-1, 7-2, and 7-3 provide a recursive decision tree that selects the

proper method to describe an ambipolar discharge containing electrons and

positive ions. In general, there are four methods. From most general to

least general, they are

1. A full multi-ion ambipolar model, as defined by the continuity
equations in Equation 3-8 and the momentum equations of Equation
3-10. This model u3ually requires numerical solution of the differen-
tial equation system. This was the model used for the numerical
solutions of Chapter VI.

2. A proportional multi-ion model. Such models take advantage of
any proportionality present in the discharge, but still use a set of
continuity and momentum equations that couple the various species.
For most geometries this model can be solved analytically with the
possible exception of the determination of the electron temperature.
An example of this model would be the PT case of Chapter V, where
charge transfer coupled the various species together and required
solution of all the equations to produce an answer. Other examples
would be the electron temperature comparisons Chapter VI, where
determination of the electron temperature required incorporation of
information on all the species into the numerical solution.

3. Use of the multi-ion ambipolar diffusion coefficients defined by
Da = A- (1+Ttri), with each ion species modelled independently of the
others. The difference between this method and the previous method
is that the momentum and continuity equations for the each ion only
include transport coefficients for and functional dependencies on that
ion. As a result, only those species for which information is required
need be modelled.

4. Single-ion ambipolar diffusion, as first developed by Schottky for
simple volume ionization only (Schottky, 1924). In the form presented
by Schottky, this method produces closed form analytic solutions for
most systems. Numerical methods may be needed if the system
contains both external and volume sources, if recombination is
significant, or to calculate kT..
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Multi-step ionization was not discussed in detail in this research.

Therefore, it is not addressed in the decision tree, either. Multi-step

ionization can be approximated by a source term quadratic in the number

densities, as will be discussed later. In that formulation it can be treated in

the decision tree exactly the same as recombination, since it is the quadrat-

ic number density dependence of recombination on the number densities

that affects which decision to make.

Basis for Evaluating Decisions. The basic question in each step of the

decision tree involves the significance of some effect in the plasma.

Generally, the significance involves comparing two source or loss terms,

either for two different species, or for the same species. In all cases, the

actual comparison is the source or loss term divided by the corresponding

diffusion coefficient.

The tree depicts each decision as a binary choice, when it actually

involves a range of significance. As the tree is described, criteria for

determining how to make the decision will be discussed. In general, the

criteria were developed by a comparison of the ratios of the on-axis number

densities in the numerical solutions. If the effect in question changed any

of the ratios Ni/N., by 10% or more it was considered significant. In some

cases there is no decisive theoretical guidance available to determine the

significance of an effect. In such cases it is often possijle to at least

describe the type of information that would be needed to make the determi-

nation.

In general, the comparisons involve the relative strengths of ionization,

recombination (or other non-linear effects such as multi-step ionization),
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and charge transfer. All of these can be expressed in terms of equivalent

collision frequencies per electron. For volume sources, the Schottky

eigencondition () /L)2 = Vi/D. or a multi-ion form as expressed in Equation

5-59 can be used to relate the ionization frequencies to the geometry of the

discharge. Here X, appropriate for cylindrical geometries, is the first zero

of the Bessel function JO; other values are appropriate for other geometries.

For external sources, the ionization frequency can be approximated by

SI/NO, where Si is the external source for species i, and where N. is deter-

mined from the analytic solutions for external sources. The charge

transfer frequency is given by vctNMIN.. The normalization by the number

densities is needed to compare all frequencies to the standard of charge

transfer collision frequency per electron. The equivalent recombination

frequency is given by Vr = aNi, again producing a value for recombining

collision frequency per electron. Finally, multi-step ionization can often be

described as a quadratic source term aiN.Ne, where ai is the collision rate

coefficient for ionization of the excited species by electron impact and N. is

the excited species number density. This produces an equivalent ionization

frequency per electron of vd = aiN 1 . An estimate for N. can be made by

assuming that volume processes dominate the excited species behavior. If

we assume that the dominant processes are excitation, given by v1Ne;

quenching, given by vqNx; and ionization, we find N. can be expressed in

terms of the other parameters as N. = vxN./(vq + aiNe) . This produces a
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value of v11 = CEvxN/(vq + a4N.) Multi-step ionization will be discussed in

more detail later.

We note that knowledge of the electron and ion number densities is

required for some of these comparisons. The analysis of proportionality in

Chapter IV produced an expression for NjiN. that we will discuss later in

this chapter as Equation 7-12. This can be used to determine Ni exactly for

some systems, and t, estimate it for others, from the value of N.. N. can be

determined in several ways. One obvious method is experimental mea-

surement, either directly by such means as measurement of the plasma

frequency, or indirectly from parameters such as total discharge current.

For a proportional externally driven system, analytic solutions similar to

those developed in Chapter V as the PX, CX, and PE cases can be used. In

addition, there are occasions where the electron temperature is required.

This can bs determined in one of three ways. First, experimental results

can be used. Second, the Schottky eigencondition or a multi-ion equivalent,

both of which are plasma-balance equations, can be used to determine the

electron temperature. Examples of the multi-ion plasma balance equation

are Equation 5-49, which is the most general form, or Equations 5-59, 5-61,

5-69, 5-76, or 5-77, which give examples for particular systems. Finally,

there are some circumstances where the plasma-balance equation is

satisfied independently of the electron temperature. The simplest example

would be a plasma sustained entirely by external sources. In these cases

energy balance must be used to determine kT.. Because of the repetition

that would result, we will not discuss the means of making the compari-
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sons in the detailed discussion below. Rather, the methods of this para-

graph are implied.

In many cases a decision cannot be made the first time through the tree.

In such cases, the correct procedure is to assume the effect is significant.

As the tree is traversed recursively, such decisions will be corrected.

Each decision point in the three figures is numbered to reference the

discussion following.

Implementation of the Decision Tree. Figure 7-1 gives the first part of

the tree. The first decision is whether multiple ions produce significant

effects in the system. There can be systems where there is truly only a

single species present. In other cases, the analytic solutions available from

this model can be used to show that only one species is significant, even

though others are r-,.sible. The pertinent analytic result is that, for

proportional syntems, the ion number densities are proportional to SV'D .

If that ratio for a particular species is much greater than for any other

species, and if there are no other effects that invalidate proportionality, then

the other species can be neglected. In most cases, however, the initial

answer will be that the multiple ions are significant. As the tree is tra-

versed, it is possible to arrive at points where one species is neglected and

the tree re-entered. Eventually, all species but one may be eliminated. This

would lead to a decision at step 1 that multiple ions are not significant.

If multiple ions are not significant, the next decision at step 2 involves

the significance of non-linear effects, in particular recombination. The

effects of recombination in single-ion discharges have been addressed by

other authors. In general, the significance of recombination can be
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Figure "-1. Initial Decision Tree for Multi-Ion Models

expressed in terms of a comparison of the strength of the source term

versus the recombination term. This leads to results such as that of

Solunskii and Timan, who used a series expansion to address recombina-

tion in single-ion volume source discharges (Solunskii and Timan, 1964).

They produced a expression giving the relative importance of diffusion

versus recombination:

yes =1 NN(7-9)

where No is the loss rate due to recombination, ND the loss rate due to

diffusion, Neo the on-axis number density, and s3 the recombination rate

coefficient (Solunskii and Timan, 1964: 209). Solunskii and Timan's results

indicate that electron losses to recombination are on the order of 10% of the

diffusion losses when the on-axis ratio of recombination frequency to

effective diffusion loss frequency D3Neo/(Xo2 D./R2) is 15%. The numeric
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calculations from this research are consistent with Solunskii and Timan in

that they indicate recombination to be significant when the recombination

frequency is 10% or more of the ionization frequency for a particular

species.

For sources other than simple volume ionization, such as external

sources, the Schottky eigencondition may not hold. In those cases, a direct

estimate must be made of the strength of the recombination loss term. In

many cases, the analytic solutions available for recombination-less dis-

charges can be used. For instance, for a uniform external source in

cylindrical geometry, the single-ion equivalent of the solutions from the CX

case in Chapter V can be used to determine the on-axis values for the

electron number density N. and ion number density Ni (which will, of

course, be equal for the single-ion case). The source term Si can then be

compared to the recombination loss term cdxNiN. Since the values of Ni and

N. will both be lower with recombination present than the CX case would

produce, this comparison provides a conservative evaluation of the signifi-

cance of recombination.

If effects such as recombination, multi-step ionization, or a combination

of external and volume sources are determined to be significant, then

Schottky's original model is inappropriate. Using Schottky's model under

such circumstances can produce inaccurate values for measurable

parameters such as the total discharge current, electron temperature, and

electric field. The ionization frequency depends exponentially on the field or

temperature. As a result, small changes in the field or temperature can

accommodate required changes in the ionization frequency. Therefore, the
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field and temperature will be fairly insensitive to departures from a pure

volume source. Calculations of the total discharge current depend on

correct values of the drift velocity of the electrons and correct integration of

the number density as a function of position. The drift velocity is often a

monotonic increasing function of the longitudinal field. Incorrect spatial

profiles cause errors in the integration of the number density. The

combination of the drift velocity dependence and errors in the number

density can cause the current to be more sensitive than the field or tempera-

ture.

If none of these effects are significant, then the discharge can be

modelled by Schottky's original ambipolar diffusion model, using volume

sources, external sources, or both, as appropriate (Step 3). Neglect of

external sources for simple volume sources produces the same solutions

Schottky found. Neglect of volume sources for proportional external

sources produces the single-ion equivalents to the various external cases

PX, CX, and PE discussed in Chapter V. If both types of sources are

present, the results will correspond to none of the solutions presented here.

This research did not investigate systems with combined external and

volume sources. Therefore, no firm conclusions can be drawn with regard

to when one type of source term can be neglected, relative to another. In

general, however, it is necessary to compare the strength of the two source

terms. The simplest such comparison is to compare the ionization fre-

quencies, not the overall source terms. The volume ionization frequencies

are determined from the plasma balance equation, assuming no external

sources. The external ionization frequency is written as Si/Ne, where Si is
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the external source term, and N. is the electron number density deter-

mined from the analytic solutions assuming no volume sources. This

formulation is advantageous because it avoids the necessity of determining

the electron number density for volume ionization.

Figure 7-2 describes the necessary actions if the answer in step 1 was

that multiple ion effects were significant. The first decision to make, in

step 4, is to determine whether recombination is significant. The numeri-

cal results of the volume source and external source recombination cases

indicated that recombination can still affect the discharge if the on-axis

ratio of the total recombination loss c4NiN, to source for some species i is as

low as 15%. Once the number densities have been estimated, the decision

in step 4 can be made.

If the decision in step 4 is that recombination can be neglected, then

Figure 7-3, the charge transfer decision tree, describes the decision process.

Otherwise, the algorithm moves to step 5, which addresses the presence of

a dominant source for some species k.

If one species has a source considerably larger than all the others, by

one or more orders of magnitude, then the possibility exists that one or

more of the minority species can be neglected. Note that the question to be

addressed in step 5 is not just the magnitude of the various sources, but the

ratio of their magnitudes to their free diffusion coefficients. As was stated

at the beginning of the discussion of the decision tree, it is this ratio which

is the significant parameter. Up to this point, we have been comparing

source and loss terms within a single species, so the diffusion coefficient

did not enter into the results. Now, however, we are comparing among
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Figure 7-2. Decision Tree for Multi-Ion Recombining Systems

different species, and the distinction among the various diffusion coeffi-

cients must be made.

Step 6 addresses the case where no species has a dominant source. The

possibility still exists that one or more apecies have such high recombinatio

n rates that they can be neglected. If the recombination of any species is

sufficient to re~duce its net source to the point that the net source divided by

the diffusion coefficient is at least an order of magnitude less than that of

the other ions, then the species can generally can be neglected. In such

cases the decision tree is re-entered at step 1 in Figure 7-1, but with one

fewer species. Otherwise, a nonproportional multi-ion model must be used.
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Step 7 deals with whether the species with the dominant source also

undergoes significant recombination. For this case, the significance of the

recombination for the dominant species is determined by the net source,

that is, ionization minus recombination, for that species. If the net source

including recombination losses divided by the diffusion coefficient is still

high enough to dominate the other species, then the dominant species is

considered not to have significant recombination for this decision point.

If the result of step 7 is "No", then at least one species has a very small

source compared to the dominant species. The minority species can be

neglected, and the decision tree re-entered from the beginning with one less

species. Otherwise, a non-proportional multi-ion model must be used.

Figure 7-3 is the decision tree for discharges with non-resonant charge

transfer possible. The tree starts at step 8, as the result of a "No" decision at

step 4 in Figure 7-2. The decision in step 8 is whether charge transfer is

significant. Generally, the numerical results indicate that the errors in the

number densities or fluxes induced by neglecting small amounts of charge

transfer are proportional to the ratio of the charge transfer term to the

source term, with a ratio of 10% giving errors of 10%.

This ratio can be estimated using the analytic solutions for either

volume or external sources. Since both volume ionization and charge

transfer are linear processes with respect to the number densities, the

actual number densities are not needed to evaluate the ratio for volume

sources. The analytic solutions for external sources provide the number

densities, which can then be used to estimate the ratio.
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is reasonable to neglect a process if" its source/diffusion coefficient ratio is

an order of magnitude less than that of some other process. If the process-
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es left have differing spatial dependencies, then the solutions will be non-

proportional, and a full multi-ion non-proportional model must be used.

The most common example of this would be a combination of external and

volume ionization sources.

Step 10 addresses the case of volume sources only, where calculation of

kT* must be addressed. Calculation of kT. is not always pertinent. An

example would be in an experimental discharge, where kT. could be

measured. If the answer in step 10 is "No", indicating calculation of kT. is

unnecessary, then the problem resolves into a set of independent Schottky

solutions, one for each ion, and with no coupling from species to species.

However, if exact determination of the electron temperature is required,

then a proportional multi-ion model must be used. In either case the multi-

ion ambipolar diffusion coefficient Da = Di(1+Tfri) can be used.

An answer of "Yes" in step 8 indicates that significant charge transfer

can occur in the discharge. The question then to be resolved in step 11 is

whether the charge transfer rate for any species is high enough that the

species can be neglected. Our numerical results indicate that it is reason-

able to neglect a species if its estimated charge transfer loss vtNi is at least

equal to its source, where Ni is calculated by assuming no charge transfer.

Note that both Ni and the estimated loss will be higher than the actual

values. If the species can be neglected, then the decision tree is re-entered

with that species eliminated. Note, however, that there must be adjust-

ments to the total source for the recipient of the charge transfer. The

effective source for the gaining species is its original source, plus the

source for the species that is being eliminated. If several species gain in
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the charge transfer process, then the sources for those species are adjusted

proportionally.

In step 12 we address the question of whether any species k has a source

to diffusion coefficient ratio at least an order of magnitude greater than that

of the other species. If the total source for species k (ionization and charge

transfer) divided by its diffusion coefficient is at least an order of magnitude

larger than the net source (ionization and charge transfer) divided by

diffusion coefficient for some minority species, then that minority species

can be neglected. In that case, the decision tree is re-entered at step 1 in

Figure 7-1, with any charge transfer losses of the neglected species being

allocated as sources for the gaining species.

If no species can be neglected as the result of step 12, then in step 13 it is

necessary to determine if any species has a significant external source

term. If the only source terms are external, then the system will be non-

proportional, and a non-proportional multi-ion model must be used. The

present research did not investigate combined external and volume sources

with charge transfer present, and so no firm conclusions are available

about the criterion for significance of the external source compared to any

possible volume sources. However, the external source term is independent

of number density while charge transfer and volume ionization are both

linear in the number densities. Therefore, it is reasonable to compare the

external source to the combination of volume source and charge transfer

source (or loss, as appropriate). If that combination divided by the appro-

priate diffusion coefficient is much greater than the external source divided

by the diffusion coefficient, then the external source may be neglected, and
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a proportional multi-ion model may be used. In this case the solutions will

resemble the single-ion Schottky solutions. If the external source cannot be

neglected, a non-proportional multi-ion model must be used.

Results of the Investigation

A new approach to ambipolar diffusion has been developed, that involves

a slightly different set of assumptions from more traditional models. In its

most general form, this new model can describe any temperature gradient-

free quasi-neutral collisional plasma. In particular, the most general form

of the new model includes positive or negative ions of any state of charge,

arbitrary species temperature, and arbitrary source terms. The model was

used to examine systems containing electrons and positive ions, with all the

ions at the same temperature. We analyzed the implications that this

model has for the concept of proportionality, and developed a number of

solutions, both analytic and numerical. The model gave good agreement

with previous theoretical and experimental investigations.

Summary of Results. The research produced a consistent description of

the behavior of quasi-neutral multi-ion plasmas:

1. It is possible to exert some control of the discharge temperature by
introducing a minority species that has a higher diffusion coefficient
than the background species and a source that includes charge
transfer from the dominant species. This is a consequence of the
multi-ion version of a plasma-balance condition that requires a
balance between the ionization source and the total losses. The
present model duplicates the single-ion version of the plasma-
balance equation, which is Schottky's eigencondition (Schottky, 1924).
The model also presents a multi-ion version in Equations 5-59 and
5-76 that reduces to Young's plasma-balance expression for cold ions
and explains portions of Schmidt's experimental results (Young,
1965. Schmidt, 1965).

7-21



2. Knowledge of the spatial behavior of the source terms is sufficient
to determine whether a system is proportional. If the system is
proportional, then the relative magnitudes of the various particle
densities, and of the various fluxes, can be determined from Equa-
tions 4-11 and 4-13 without determining the complete solutions.

3. As expected, the model predicts that systems whose number
densities are proportional will have fluxes and net source terms that
are proportional as well.

4. The spatial dependence of the ambipolar electric field is insensi-
tive to the multi-ion nature of the discharge. In fact, for the propor-
tional discharges of Chapter V, the spatial dependence of the field is
identical for both single and multiple ions. However, as in single-ion
ambipolar diffusion, the field is still sensitive to such effects as
recombination, and to the electron temperature.

5. A number of scaling relationships were demonstrated. In several
cases, these relationships duplicated or were straightforward
extensions of the corresponding relationships for single-ion diffu-
sion; any other result would have been suspect. However, new
expressions giving the ratio of the number densities and fluxes for
proportional discharges were developed as Equations 4-11 and 4-13.

Proportionality. We briefly restate the conditions under which the

species density profiles will have the same spatial dependence, and then

discuss the implications that those conditions have for the scaling of

discharge parameters.

Requirements for Proportionality. There are a number of equivalent

statements of proportionality, starting with the definition:

Ni =IKNe (7-10)

Here, K, is the constant of proportionality.

For those systems which contain only electrons and positive ions with

the same ion temperature for all species, and for which the Schottky

boundary conditions are a reasonable choice, sufficient conditions for

proportionality are
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rj
(7-11)

Equation 7-11 is the most significant result of the analysis of proportion-

ality. It provides a criterion to eliminate the possibility of a system being

proportional, as well as stating that the flux or source for each proportional

species has the same spatial dependence as the sum of the fluxes or sources

for all species. In practice, a very large number of situations of practical

interest satisfy Equation 7-11, or come very close. Many of these systems

have ben shown to be proportional, and we expect them all to be. Mathe-

matically, except for pathological cases with no practical application, all

these situations of practical interest are equivalent to one of two cases:

1. The only sources or losses for any species are external sources,
and those sources are proportional in the sense that all the sources
have the same spatial dependence. Examples include all the
external source cases of Chapter V.

2. The only sources or losses are generalized volume sources, with
all net sources having the same dependence on the number densities.
Examples include the volume source cases of Chapter V, as well as
the volume source-charge transfer case. A less common example
would be a discharge with sources dominated by multi-step ioniza-
tion, and the only volume losses being recombination. In such cases,
the volume sources and losses would all be quadratic in the number
densities, that is, with N, or NNi dependence, and proportional
solutions would be possible.

Equation 7-11 can also be used to show that analytic solutions for multi-

ion diffusion can be obtained through two different procedures:
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1. The analytic solution can be found without assumning proportion-
ality, as in the PX. CX., and PE examples of Chapter V.

2. The form of the source term can be used to show that proportional-
ity is allowed and what the constant of proportionality must be, as in
the PT example of Chapter V.

Applications of the Proportionality Conditions. Having restated the

conclusions from Chapter IV, let us discuss how those conclusions

addressed the problems of Chapter II.

Equation 7-11 provide a concise statement of when proportionality is

possible. In particular, the first expression in Equation 7-11 provides a

means of ruling out proportionality prior to attempting to describe a

physical situation. In fact, much of the structure of the decision trees is

based on applying Equation 7-11 to the various combinations of external and

volume sources, charge transfer, and recombination examined in this

research.

Now, consider the information that proportionality provides in deter-

minig solutions. Prior to the present effort, the assumption of proportion-

ality was sufficient by definition to guarantee that the number densities

would have the same spatial dependence, but provided no more information

about the solutions. However, the relationships in Equation 7-11 change

that. Even before solutions are known, the ratios of the various number

densities to the electron density and of the various fluxes to the electron flux

can be determined. An example is the analysis of the volume source plus

charge transfer PT system in Chapter V. The equivalent of Equation 7-11

was used to show that the ratios of the number densities were constant

prior to determining the solutions. The value for Ki determined from
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Equation 7-11 was then used as part of the process of solving the system of

differential equations.

In addition to using proportionality to determine solutions of the

differential equations, it is possible to use proportionality to simplify the

system of differential equations. Recall the discussion in Chapter IV of the

definition of ambipolar diffusion coefficients for the not uncommon case of

proportional systems of positive ions at the same temperature where the

electron mobility is much higher than the ion mobility. Summarizing the

results of Equations 4-28 through 4-32, the momentum equations become

ri=-D 1++-- VN'

(7-12)
M M

r= r=i M 1+1T')VN"

where Sj represents the ion source term; e. g., ionization frequency,

external source, or so forth. These expressions were well-known in the

field prior to this research, and are in textbooks such as Brown (Brown,

1966: 67-68). However, until now there was no analysis that explicitly stated

the limitations of this simplification. For example, Brown's unstated

assumptions placed his discussion in the context of simple volume ioniza-

tion only, for which his conclusions are valid.

There are many cases where simple volume ionization is the only

significant volume process. In those cases the use of Equation 7-12 can

completely uncouple the solutions for the various ion species from each

other. As a result, the problem of finding solutions is vastly simplified; in

general, each species can be treated completely independently, turning a
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system of 2M + 2 coupled differential equations in M + 1 systems of two

equations each. Not only can the equations for one species be solved

independently of those of another species, it is unnecessary to solve the

equations for a species at all if the a description of that species' behavior is

not needed. We make this statement while recognizing that the effort of

including additional species may be very small. However, it is conceivable

that only some of the species in the system would be of interest. For

instance, experimental determination of ionization frequency for a particu-

'ar species could be made by measuring the ion wall flux of that species for

a known external source. Such determinations would require knowledge

only of the transport properties of that species, and the electron tempera-

ture.

There are proportional cases where the use of Equation 7-12, although

perfectly correct, is not as useful. For instance, charge transfer changes

one ion species to another. In that case, the species involved are coupled

through their respective continuity equations. Although the formal

solution itself may be no more difficult than a case without charge transfer,

the requirement to include more than one species in the solution makes it

no longer possible to consider each ion species separately. Instead,

describing either of the species involved in the charged transfer requires

accurate input values for both species.

Analytic Solutions. The results above are complementary to the analytic

solutions developed in this research. This investigation identified a broad

range of systems for which proportional analytic solutions exist and can be

found without the restrictive a priori assumption of proportionality. To the
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best of our knowledge, no other model has produced analytic solutions for

multi-ion ambipolar diffusion without assuming proportionality, or some

equally restrictive constraint. Much of the information in the solutions,

such as relative scaling of the fluxes and densities, was available from the

proportionality results, without actually producing the solutions. For the

simple geometries chosen here, the ability to gain information without

producing the full solutions was not significant. However, in more

complicated geometries, such as multi-dimensional systems with non-

trivial boundaries, producing full solutions might be very difficult. In such

cases knowledge of the relative scaling might be sufficient. The ability of

this model to produce useful information in such circumstances is a

significant improvement over previous models.

The solutions can be divided into two types. For a large number of cases

(PX, CX, PV, CV, and PE), including Schottky-like volume sources propor-

tional to electron number density and external sources with the same

spatial dependence for all species, it was possible to solve the system while

making no assumptions about proportionality at all. Once the solutions

were obtained, they were shown to be proportional, as the results of Chapter

IV had indicated. One other case involving the same volume source plus

charge transfer served as an example of using the knowledge about

proportionality to guide the solution process (PT). From Equation 7-11, it

was possible to determine the form that the proportionality constants had to

take. This knowledge was used to determine those constants. Once that

was done, it was possible to find the solutions, and then verify the propor-

tionality. Without Equation 7-11, finding solutions would have been very
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difficult, if not impossible. Although this technique was only used once, it

would generally be applicable to a large number of systems.

Influence of Charge Transfer on Plasma Balance. The effect -f the

discharge conditions, such as pressure, tube radius, and volume losses, on

the electron temperature was investigated. The electron temperature is

governed by plasma balance: in the steady state the net source of each type

of charged particle, integrated over the volume of the discharge, is equal to

the flux of that particle at the edge of the plasma, integrated over the area of

the walls. As a result, a self-consistent solution is produced where kT. is

determined by the need for the ionization to be appropriate for the losses in

the volume and at the walls. Any process that increases losses requires a

higher electron temperature to offset the higher losses.

The investigations pertinent to demonstration of this effect included only

systems with volume sources, where the ionization source is an explicit

function of kTe. The quantitative results were numerical only, since

accurate solutions of the eigencondition relating the discharge parameters

to the temperature can only be found numerically. However, there were

also qualitative results based on the various numerical solutions. The most

significant of these was the effect of charge transfer on the electron temper-

ature.

In a plasma containing multiple ion species, any process that increases

the number of ions of one species will cause the electron temperature to rise

or drop, depending on whether the species has a diffusion coefficient higher

or lower than those of the other species. For instance, adding a minority

gas of higher diffusion coefficient to a single-ion plasma will raise the
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temperature due to the increased overall losses. With no charge transfer,

the relative fraction N./Nj of the each ion species i scales linearly with its

relative gas fraction. Charge transfer represents a loss to the dominant

species but a gain to the minority species. Therefore, for small amounts of

the minority gas, charge transfer causes the relative fraction of the

minority species to increase faster with gas fraction than in the charge-

transfer-free case. As a result, it is possible to raise the temperature of the

discharge by an amount incommensurate with the gas fraction of the

contaminant species.

Figure 7-4 shows the temperature and ionization frequency variation

produced by small admixtures of a charge transferring gas, with the ratio

of the diffusion coefficient as the parameter of interest. The gas parameters

were chosen to emphasize the changes, and therefore are not completely

realistic. They correspond to a background gas whose ionization potential

is 15 V, comparable to N 2, A, or H 2. The background gas ions have a

diffusion coefficient of 10 cm 2/s, comparable to Xe. The overall charge

transfer rate is equivalent to 0.1% of an impurity that has a charge transfer

rate coefficient of 10-9 cm 3/s. The data are depicted as a function of Dt/Db,

the ratio of the diffusion coefficient of the gaining species to that of the

background species. The temperature is 1.15 eV with the impurity and the

background gas ions having the same diffusion coefficient, and rises to a

value in excess of 1.6 eV for a value for D2/Dj of 200. The ionization

frequency for the same range of diffusion coefficients rose from 455 Hz to

24,820 Hz.
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Figure 7-4. Effect of Changing Diffusion Coefficient on Electron
Temperature and Ionization Frequency

These results arise directly from the multi-ion nature of the discharge.

Charge transfer produces one species at the expense of another. If the

diffusion coefficients of the two species are similar, the losses are unaffect-

ed by the transfer, and the temperature does not change. As the diffusion

coefficient of the contaminant ion increases, its losses increase. These

losses must be made up by increased ionization, and therefore a higher

electron temperature. On the other hand, as the diffusion coefficient drops,

the contaminant ion is retained in the discharge, allowing the ionization

frequency and temperature to drop.

Given an appropriate choice of gases, this phenomenon allows adjust-

ment of the temperature of the plasma, while still retaining the background

gas as a significant, or even dominant, ion. In fact, as the contaminant ion

achieves a higher and higher loss rate, the discharge becomes more and

more dominated by the background gas ion. For instance, in Figure 7-4, the
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charge transfer rate is so high that the discharge is dominated by the

gaining ion as long as the diffusion coefficients are at all comparable. The

mixture ratio for equal diffusion coefficients was only 1.5% of the back-

ground gas ion to 98.5% for the contaminant ion. With the contaminant ion

having 10 times the diffusion coefficient of the background ion, the ratio

increased to 15:85. For a 50-to-1 diffusion coefficient ratio, the mixture was

50/50. Finally, for the extreme diffusion coefficient ratio of 100:1, the

mixture reached 68:32.

This example emphasizes the temperature variation by its choice of the

range of Dt/Db. The more realistic example of the Schmidt comparison in

Chapter VI shows a similar effect. At 2.0 Torr, 80 mA current, no H2, and

only a single ion species, the electron temperature was 1.30 eV, and the

discharge contained 100% N2+ ions. With 0.01% H2 added, the temperature

rose to 1.41 eV, but the discharge still contained 55% N2
4 ions. Even at 0.1%

H2, with the temperature up to 1.47 eV, the discharge contained 11% N 2
4

ions. In other systems, with a larger difference in diffusion coefficients,

the effect would been more pronounced.

Recommendations for Future Research

New Investigations Suggested by the Present Model. There are two

areas in particular where the new model brought out the need for further

investigations. One was an experimental investigation, backed up by

further calculations using extensions of the present model. The other is

primarily theoretical, and represents an area which the present model is ill-

suited to address.
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N2 -H2 Investigations. We saw, in the comparison to Schmidt, the

ability of the new model to describe experimental discharges. As we noted

at the time, Schmidt's results were -iot an ideal subject for comparison. It

would be useful to perform an experiment analogous to Schmidt's, but with

the better control that the improvements in experimental apparatus and

techniques have made possible. We suggest the following experimental

conditions:

1. Use of hard seal high vacuum equipment for the discharge vessel,
to allow bake-out of impurities.

2. Use of high-purity gases, with controlled admixtures of H 2 in an
N2 carrier gas.

3. Direct measurement of electron number density.

4. Use of mass spectrometers of sufficient resolution and sensitivity
to resolve all the various nitrogen ions, as well as to distinguish the
possible hydrogen ions.

Such an experiment would allow a comparison similar to the comparison

made to Schmidt, but with the higher precision made possible by modern

equipment.

There must be a more precise theoretical calculation to go with the more

precise experiment. Some processes would need to be modelled with more

precision than was possible in the initial Schmidt comparison. Other

processes be neglected in that comparison need to be added. In particular,

1. The calculation of the ionization frequencies as a function of the
electron energy distribution would have to be more precise. The
assumption of a Maxwellian energy distribution used in the Schmidt
comparison is not completely accurate for N2, which has low-lying
vibrational and rotational levels that alter the distribution function.
Numerical algorithms are widely available to perform such calcula-
tions; they need to be incorporated.

2. The existence of excited levels below ionization allows for the
possibility of multi-step ionization. As the number density increases,
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the importance of multi-step ionization increases, until it can no
longer be neglected. Estimates of the relative significance of multi-
step ionization were discussed at the beginning of the decision tree
section. We will shortly discuss multi-step ionization in a broader
context. At that point we will address this in greater detail.

3. N 2 and H 2 are subject to electron impact dissociation. This leads
to the formation of ionic species such as N 3 ÷, H+, and H 3 '. This
dissociation, and the accompanying additional species, would need to
be included.

4. Recombination was ignored for N 2 +. In practice, it will occur,
although in many cases at insignificant levels. The possibility of
such recombination, as well as for species such as N 3 ÷, N 4÷, and H 3÷,
needs to be addressed.

All the effects above can be included in the present model, although not

without considerable revision of the numerical algorithm. Those revisions

will be discussed later.

Multi-ion Effects on Sheaths. There are a number of questions that

arise when addressing the plasma sheath in any plasma, whether multiple

ions are present or not. Riemann has presented a very thorough review of

the field, with primary emphasis on single ions, but with some mention

made of multi-ion effects as well (Riemann, 1991). He pointed out the

importance of the well-known Bohm criterion (Riemann, 1991: 496):

n> 1/2 (7-13)

where vi is the directed ion speed entering the sheath, and M is the ion

mass. This criterion is appropriate for a collisionless sheath in the limit

where the Debye length goes to zero (Riemann, 1991: 493, 495). Since the

ion velocity represents an energy greater than the ion thermal energy, the

Bohm criterion requires the presence of a field penetrating slightly into the

plasma, in what is referred to commonly as the "presheath" region (Ri-

emann, 1991: 493). Riemann also showed that a generalized form of
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Bohm's criterion is related to a singularity in describing the plasma-sheath

transition region (Riemann, 1991: 493). The presence of the singularity

requires addressing the problem in at least three regions: the presheath,

where quasi-neutrality still holds; the sheath, where Poisson's equation

must be used; and a transition region between the two (Riemann, 1991: 498-

499).

From Riemann's article, we can see that many of the phenomena in the

sheath involve such parameters as the ion mass, the ion energy distribu-

tion, and the fraction of ions absorbed, reflected, or emitted at the wall,

(Riemann, 1991: 496, 502-506, 503-504). Clearly, the presence of multiple

ions complicates this already complex situation.

Some of these difficulties have been addressed. For instance, Riemann

presented a form of the Bohm criterion for multiple positive ions, but

neither pursues it nor explains its development (Riemann, 1991: 506).

Braithwaite and Allen discussed a constraint on the positive ion directed

velocity at the sheath for a discharge containing positive ions, negative ions,

and electrons (Braithwaite and Allen, 1988). They assumed that both the

electron and the negative ion densities were related to the species tempera-

tures by the Boltzmann relation, which implied negative ion densities lower

than the electron densities (Braithwaite and Allen, 1988: 1733). They found

that the positive ion velocity depended upon both the electron and negative

ion temperatures and upon the negative species densities (Braithwaite and

Allen, 1988: 1733).

A related question to the proper formulation of a multi-ion Bohm

criterion is the choice of boundary conditions for the description of the quasi-
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neutral plasma. The Schottky boundary conditions were used in this

research: N(L) = 0 More accurate boundary conditions would allow a

better depiction of the transition from the plasma to the sheath. Since the

nature of the sheath depends in part on the particles entering from the

plasma, modelling the sheath accurately requires a good description of the

interior of the plasma, with boundary conditions that accurately depict the

number densities and fluxes at the beginning of the sheath.

We also point out that sheaths can be addressed in two extremes. One is

the collisional sheath, where the mean free path for collision is much less

than the sheath thickness. In such sheaths the particles are in a field-

driven diffusion condition. The other extreme is the collisionless sheath,

where the particles are in a field-driven free fall. Regardless of which

extreme is chosen, the sheath description is simplified compared to an

intermediate regime. The presence of multiple ions can prevent such a

description, since the different mean free paths for collision can cause a

sheath to be collisional for one species but collisionless for another.

Charge transfer in the sheath can further complicate this situation. In

a single-ion plasma, the identity of the ion species does not change in the

sheath. In a multi-ion plasma, non-resonant charge transfer can cause

the identity of the ion species to change. This alone can require more

sophisticated models than a simple single-ion sheath model. The losing

species must be in a collisional regime, or charge transfer cannot be a

significant process. If the other species is in a collisionless regime, the

situation is complicated still further.
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Extensions of the Present Model. We have discussed further research

into areas the present model may not be able to fully address. There are

also areas of fruitful research that the present model can address quite

well.

Additional Ion Species. The simplest would be to include more ion

species than the two addressed here. This requires changes in neither the

formalism of the differential equations, nor in the nature of the processes

included in the numerical algorithm. The only changes would be those due

directly to the larger number of equations included in the numerical

system.

More Accurate Kinetic Coefficients. In addition, it would be

straightforward but more complex to include more accurate values for the

kinetic coefficients. As discussed earlier in the context of applying modern

experimental techniques t, an equivalent of Schmidt's experiment, the

model used in this research assumed Maxwellian electron energy distribut

ions. This was appropriate for the purposes of the research and the

experimental data available. However, such an assumption is often not

appropriate. It is relatively straightforward to include calculations of the

ionization frequencies and other kinetic coefficiente that are based on

calculations of the electron cnergy distributions. Inclusion of such calcula-

tions would allow accurate modelling of laboratory discharges su,.'. as

Schmidt's.

Expansion of Sources. Adding more complicated kinetic reactions

than the single step ionization, recombination, and charge transfer already

included would be conceptually simple, but more complex to put into
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practice. However, there are reactions where the work would be justified.

The most obvious would be multi-step ionization, which occurs in a number

of discharges. Multi-step ionization could be included in two ways. First, it

could be approximated by a source term quadratic in number density,

instead of linear. Such a method has already been applied to single-ion

systems by, for example, Spenke (Spenke, 1950).

The difficulty with such a simplistic approach is that multi-step

ionization is not always accurately modelled by a quadratic dependence. If

we assume that the behavior of the excited species is dominated by volume

processes and neglect diffusion, we can write the continuity equation for

that species as

aNx = v.N. - aONxN. - vqNx (7-14)

where v. is the excitation frequency, ai the ionization rate coefficient from

the excited state, Vq the quenching frequency due to any of a number of

possible mechanisms, Nx is the number density of excited species, and N. is

the electron density. In the steady state the time derivative is zero. This

allows us to find N. in terms of the other quantities in Equation 7-14. We

can then use this information to express the ionization rate:

VaiNN. = + CiN2 (7-15)

Equation 7-15 allows us to determine the number density dependence of

the multi-step ionization. If the dominant loss from the excited species is

quenching, then the ionization rate is quadratic in N.. On the other hand,

if the dominant loss is the ionization itself, then the ionization rate is linear
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in N.. If we were include diffusion as an effective loss rate, we would find

that it would have the same effect on the ionization rate dependence as

quenching.

The most accurate method would be to accurately include diffusion by

using a continuity and momentum equation for the excited species N., as

was done in simplified form by Ingold for a single-ion plasma (Ingold,

1970). To paraphrase Ingold's results, both continuity and momentum

equations would have to be included, since the excited species would

undergo losses at the wall due to collisional quenching. The momentum

equation would be considerably simpler than those for the charged species,

since there would be no electric field term. However, the boundary condi-

tions could be more complex, depending on the efficiency of wall quenching.

If the quenching is 100% effective, then the boundary condition would be

N1 (L) = 0 , comparable to the charged particle boundary conditions. On the

other hand, if there is no wall quenching, the gradient of the excited species

is zero. In that case the momentum equation is eliminated from the

differential equation system, producing a form equivalent to Spenke

solution or to Ingold's final solution. For intermediate values of the

quenching efficiency, a boundary condition can be established in terms of

the ratio of the outgoing and reflected flux (Ingold, 1970).

The resulting system could be solved by the same numerical methods

used in the present research. For a system equivalent to Ingold's, which

assumed no diffusion for the excited species, the numerical system is very

straightforward, producing additional volume terms in the continuity

equations for the charged species (Ingold, 1970:91). In any case, inclusion
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of such reactions would allow accurate modelling of systems for which

multi-step ionization is important, and would be a worthwhile extension of

the present research.

Magnetic Fields. Using previous ambipolar models to describe

diffusion in the presence of a magnetic field was difficult, due to the

possible failure of congruence in multi-dimensional systems. This failure

is a consequence of the possibility of diffusion occurring in different

directions for the different species. As Boeschoten points out (including the

trivial limit of no collisions, where diffusion is no longer valid at all)

In a strong magnetic field the rate of diffusion of a plasma becomes
anisotropic; in the direction parallel to the field the diffusion rate is
almost unaffected, while normal to the field the diffusion may be
greatly reduced, and on the simplest theories would vanish completely
in the limit where interparticle collisions are neglected. (Boeschoten,
1964: 341)

An effective ambipolar diffusion coefficient in this situation is given by

D = D (7-16)

(l+(Wv)2)

where D1 is the diffusion coefficient perpendicular to the field, D is the

diffusion coefficient in the absence of the magnetic field, Ok is the cyclotron

frequency, and v the collision frequency between the charged species and

the background gas (Boeschoten, 1964:342). If the field is sufficiently large,

D1 for the electrons will be greatly reduced compared to D.. Simon was the

first to point out that this produces a two-dimensional diffusion, with the

primary direction of electron diffusion being along the along the field, and

that for the ions being perpendicular to the field (Simon, 1955).
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Consider what this two-dimensional flux does to the assumption of

congruence. For convenience, we treat a single-ion case. Under those

circumstances, charge conservation in a steady-state situation implies

v.re = V'ri (7-17)

If we are treating a one-dimensional case, the divergences in Equation 7-17

reduce to an ordinary derivative. In addition, many systems have a point or

axis of symmetry where any vector quantity, even a one-dimensional one,

must be zero. An example would be at r = 0 in cylindrical geometry. The

existence of such symmetry implies that the fluxes are both zero at r = 0

Equation 7-17 then describes two quantities that are equal at one point, and

whose ordinary derivatives are equal. The conclusion is that the two

quantities are equal everywhere, which implies congruence. Congruence

is then used to derive the ambipolar electric field, making the use of

Poisson's equation unnecessary.

Now consider the situation in Simon diffusion. We still have Equation

7-17. However, it is no longer sufficient to guarantee congruence. Consider

a single-ion discharge in cylindrical geometry where the two fluxes are

given by

--ri =V cos(L Z)J1(LP) ý
) 2 

(7-18)

re 2 vi sin(3l z)Jo(Xp) -z9 2

In this example the fluxes are obviously not equal. Yet, they each meet a

boundary condition of zero radial flux along the line where p is zero, and

the divergence of each is viJo(.p) . Although we make no claim that this
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describes a real discharge, it does have some of the features expected for

diffusion in a cylindrical discharge with a longitudinal magnetic field and

a volume source term. The electron diffusion is in the longitudinal

direction; the ion flux is purely radial. The spatial dependence in each

direction is appropriate to a one-dimensional system diffusing in that

direction. Clearly, this is a situation that is achievable in concept, or even

in practice, and yet congruence does not hold.

Previous ambipolar diffusion models could not fully describe discharges

such as that depicted in Equation 7-18. Limited attempts have been made.

For instance, Ecker outlined a treatment of ambipolar diffusion that

replaced congruence with a condition that the radial ion flux was equal to

an unspecified fraction of the electron flux. He addressed the case for one-

dimensional diffusion, but did not develop Simon diffusion further (Ecker,

1967).

The present ambipolar model can address this problem, since it does not

rely upon congruence as the ambipolar condition used to replace Poisson's

equation. Instead, the ambipolar condition that the present model uses is

that the gradient of the net charge density is zero. This assumption is as

valid in multiple dimensions as it is in a single dimension. Therefore, the

present model could be used to address Simon diffusion.

To clarify the ability of the model to address these conditions, it is

appropriate to offer a schematic development of the appropriate version of

the model. Consider a discharge where the mobilities and diffusion

coefficients are anisotropic. We can designate Di. as the coefficient for the

diffilsion of positive species i in the direction of the coordinate a, and
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similarly for p, The corresponding expressions for the negative species

are identical, but will use the index "k" instead of "i". The momentum

equations for the positive and negative species then become

(VNj) 1 = - + ELEN1 E
( A=-.a (7-19)

(VNk) .k - -kNkE.

Similar to the development in Chapter III, we set the sums of the gradients

of the positive and negative species equal, and solve the resulting equation

for the electric field. The expression produced for the field is then used in

Equation 7-19. The result is

(vN=~f4iN k9(ViL ra ia N ._A~a k DkaN

D DiaNi÷ k -Da

(7-20)

(Vk rk. Ac Nk AkDk
Dka Dkaa + EkaX N

Y, k~U

Except for the additional coor-linate dependence of the diffusion coefficients

and mobilities, this is equivalent to a singly-charged-particle version of the

momentum equations in Equation 3-7, which is the most general form of

the model presented in this research. The only difference is in the trans-

port coefficients. With no magnetic field, the transport coefficients are

isotropic, and Equation 7-20 is exactly equivalent to Equation 3-7. With a

magnetic field present, the transport coefficients are no longer isotropic.
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The addition of anisotropy is not necessarily as complex as it might

appear. Some of the momentum component equations may reduce to

simpler cases. The electron diffusion can be dominated by motion parallel

to the magnetic field, while the ion motion can be dominated by ion diffu-

sion perpendicular to the magnetic field (Boeschoten, 1964: 343). Each flux

is predominantly in one direction, with the two one-dimensional fluxes

perpendicular to each other. Thus, the individual continuity equations

involve only one component each, and are therefore ordinary differential

equations, while the system as a whole is multi-dimensional.

Spatial Temperature Variations. One circumstance where the a

modification of the model would be worthwhile would be situations where

the temperatures of the charged particle species are spatially varying. As it

... sed in this research, the model was valid only for uniform tempera-

tures. This limited the applicability to situations where the combination of

gas heating rates, heat capacity, diffusion of thermal energy, and thermal

boundary conditions was such that the temperature was fairly uniform

across the discharge. However, there are discharges where such uniformi-

ty does not hold, especially at higher discharge currents.

The situation where spatial temperature variations arise is in a positive

column with Joule heating by the electrons heating the background gas,

producing a higher temperature on axis. This produces several effects:

1. Since in most cases the ions are in thermal equilibrium with the
background gas, the ions also have a higher temperature on axis.

2. In steady state the background gas pressure is constant across the
diameter of the discharge. Since p = NkT, the background gas
density is lower on axis. This causes changes in the diffusion
coefficient for all species.
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3. In addition, since the electrons have a longer mean free path on
axis, the electrons acquire a higher speed between collisions from the
acceleration due to the electric field. This latter effect can b, consid-
ered to be equivalent to a higher on-axis electron temperature, with
corresponding higher ionization frequencies.

We will consider the changes this produces in the momentum equation for

the various charged particles:

my my (7-21)

Ma N VkT. T- 1VN _P

mv kT my my

If we note the definition of D = kT/mv , we see that Equation 7-21 can be

expressed as
(VkT +V_}± N

r=-DN ( - (7-22)

~kT NJ my

This differs from the form used in this research in two ways. First, D is no

longer a constant, but varies spatially. Second, there is an additional

gradient kT term. To estimate the contribution of that term, we can

approximate the gradient terms as

VN N(R)-N(O) _1

N RN(O) R
(7-23)

VkT kT(R)-kT(O) -

kT RkT(O) CR

where C is the ratio of the on-axis temperature to the wall temperature.

Regardless of the value of C, we find that the density gradient term is never

smaller than the temperature gradient term, and is generally larger. The

conclusion we draw is that the thermal gradient term has an effect on the

momentum, but will never dominate the pressure gradient term.
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Now let us consider the continuity equation. Typically, the longitudinal

electric field is fixed by external conditions. Under such circumstances, a

decrease in background number density will allow the electrons to accelera

te longer, and therefore achieve high energies, between each collision.

The result is an increase in ionization frequency. Von Engel gives a basic

treatment of this in the context of uniform number density (von Engel,

1965): 172-180). In that context, pressure and background number density

are inversely proportional. Taking that into effect, we see that his results

imply an exponential dependence of ionization frequency on number

density. This is a much stronger dependence than we saw for the momen-

tum equation.

Under such conditions, it is reasonable to model the spatial dependence

of the diffusion coefficients and the changes in source terms accurately,

but to approximate the changed momentum equation by increasing the

diffusion coefficients rather than by inclusion of the temperature gradient.

The present model can, with at most slight modifications, be used for such

a model. However, the model does not address how to determine the

temperature gradients.

In general, determining the temperature gradients would require

including energy balance in the system. This is most appropriately done by

inclusion of the energy equation, which is an energy moment of the

Boltzmann equation (Mitchner and Kruger, 1973: 183). With such an

addition, a considerably more complicated version of the model developed

here should be able to treat ambipolar diffusion including spatial temperat

ure variations.
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Conclusions

This research has produced a useful description of multi-ion ambipolar

diffusion. The model provides guidance on the level of detail needed to

describe the various types of multi-ion discharges containing positive ions

and electrons. The model duplicated the results of previous theoretical

models, but with a description that was valid in regimes where the previous

desc.iptions were not. A condition for proportionality was established that

can be used to determine whether a proportional model can adequately

describe a plasma. For proportional systems the model can provide the

relative scaling of the ion species without the necessity for finding complete

, Autions of the differential equations. Numerical results demonstrated the

possibility of controlling the temperature of a discharge by the admixture of

small amounts of a rapidly diffusing contaminant species. In addition, the

numerical solutions were used to develop a number of results describing

the scaling of discharge parameters with changing recombination or

charge transfer. The model brought out the need for future investigations,

both experimental and theoretical. Finally, further developments of the

model were suggested.
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Appendix A. Derivation of the Dimensionless Equations

In this appendix we will explain the details of going from the definitions

of the dimensionless quantities to the dimensionless form of the continuity

and diffusion equations.

Expressing the physical quantities in terms of the dimensionless quan-

tities produces

N = n-
L 3iS =~.Q

L 5  (A-1)

~yD
L4

L2

L P+

Notice that the form for S is extremely non-specific and much more

general we used in Chapter III. We will perform the derivation for this

more general case, which is the one that leads to Equation 3-22.

Now, let us consider the V operator. Without loss of generality, we can

express this operator in Cartesian coordinates. If we do so, and use the

definition of P above, the del operator becomes
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= •(A-2)

VP
L

With this definition, and the definitions of F , S ,and n, the continuity

equation (for any particle) becomes

_.)R D_= sD + IDJ_(A-3)

L L4 L5  L2 L3

Eliminating the common factors of L5 and D produces the continuity

equations given in Equation 3-22.

Now, let us consider the diffusion equation for electrons. Starting from

Equation 3-11, we redefine the physical quantities as above,to arrive at

Vn n .D. pX0 P -- D& 4  (A-4)

L L3  D.L 4 Do . +
D+ De

Elimination of the common factors of L4 from every term, and elimination

of the D/D factors, gives us

VP n,= "ye + Do J (A-5)

5D÷ Do

Next, we factor out j±+/D+ from both of the terms in the denominator of

the second term in the right hand side. That, plus the definition of £ in

terms of the mobilities and diffusion coefficients, makes the entire denom-

A-2



inator equal to l+D,+(l+ ) . The g./D÷ , combined with the gI/D. term in

the numerator, produces E . The result is the form given in Equation 3-22.

The derivation of the diffusion equation for ni follows the same pattern,

except for some minor changes. First, we note the presence of N 1/No .

From the definition of n , we see that N 1 N. = nl/n. , as in the dimen-

sionless form of the equation. Second, we change indices from e to i , as

appropriate. Third, we change the "+" in the middle of the right-hand-side

to a "-". Fourth, we note that factoring out the ý±+/D÷ in the denominator,

instead of producing E , cancels out the i+/D+ in the numerator entirely.

Finally, consider the definition of E . Recall Equation 3-12. If we consider

the case of singly-charged positive ions, this equation becomes

SDo
E= Ný(A-6)

If we no•w replace the physical quantities with their definitions in terms

ofthe dimensionless quantities, we come to

p t  j De 4  (A-7)

Again, we eliminate common terms and factors and use the definition of

e The result is the form in Equation 3-22.
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Appendix B. Integration of the Equation for N

Recall Equation IV-18:

ni =- fj si(p")dp"

Xex J(A-1)

PP

X exp f -dp" d p'

f p I f/ P'"(elj• SO .... )+ se(p .... ) )d p .... d p '".

If we consider only proportional sources of the type described in Equation

IV-19, we get the following:

rh = - • g(p")dp"

(A-2)

(sj-so) fP p.. d..
X ex ( dp" dp'

('• js'I f'g(p .... )dp .... d p"

to /P
P

Next, we make the following definitions:
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G(p) = g(p')dp'

F(p) = j G(p')dp =f g(p')dp'dp

K(EJse) 
(A-3)

(eý Sj+Se)

Si

With those definitions, Equation A-2 becomes:

Y = - G(p') e(KJ NP G p (A-4)

Now, note that dF/dp = G. Therefore, we get

Y-. G<,>') ex K,> r,> ...(A-5)

Next, we note that

SF'(p = ln(F) (A-6)

This gives us

Y = -f a ~ p ' ) e xý 1l n(, F • p " ))f ,') dp ' (A -7 )

Evaluating the limits, we find that
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Y=-f 0G(p') exp(K In(F(p')))exp(- K In(F(p)))dp'

(A-8)
=-f,• G(p') (explnl•F(p')))Mexp(- ln(F(p)}))•dp'

Taking advantage of the fact that the In and exp functions are inverses of

each other, we find

F(p')K
Y="P G(p)F(p) dp' (A-9)

From the definitions of G and F, we see that

G(p) = F'(p) (A-10)

This implies

Y= ___L. r F'(p')F(p,)K dp' (A-11)F(p)K},

Evaluating the integral is now straightforward. Upon so doing, we obtain

the following result:

y••F(p)K÷1 -F(1)K+1Y=t F--p)K+ 1)" (A-12)

From the definition ofF, we note that F(1) = 0. Therefore, we find that

Y=K-F(P) (A-13)

Finally, we use the definitions of Y, K, and F to find the expression for the

ion number density. Note that we have also simplified the expression K+1:
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Appendix C. Numerical Algorithms

Introduction

In this appendix we discuss the details of the numerical algorithms

used to find the numerical solutions in this investigation. Note that we are

not concerned in this appendix with the physics embodied in the programs;

that is explained in Appendix D. Rather, we involve ourselves with the

numerical methods themselves.

We will describe two algorithms. The first we describe will be the

relaxation method, which was used to solve all the differential equation

systems in the investigation. This algorithm was the most intensively used

in the investigation, and will require the longest explanation. The other is

the Brent algorithm, used to find zeros of several functions where roots

could not be found analytically.

The implementations of these algorithms were those of Numerical

Recipes: The Art of Scientifwi Computing (FORTRAN), by Press, Flannery,

Teukolsky, and Vettering (Press, et alia, 1989). The only modifications

made to the algorithms as published were to define all reals REAL*8, and

to change the error-handling procedures to be more useful in the present

investigation. We heartily recommend this volume to anyone interested in

numerical methods. It is by far the best we have seen at providing both

practical solutions for and mathematical insight into the problems that

arise in numerical physics.
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Relaxation Method

Previous Methods. The relaxation method is a method of solving two

point boundary value problems. Traditionally, these problems have been

attacked using some variation of the shooting method; an initial value is

assumed at one boundary, the equation system is integrated to the other

boundary, and the results are used to choose a new initial value, until the

condition at the second boundary is met. (See, for instance, Edgley and von

Engel, 1980.) In principal, such methods can solve any problem, as long as

the boundary conditions at the final boundary are continuous functions of

the initial values.

In practice, however, severe problems can result. The most common is

the failure of the numerical method to successfully traverse from one end of

the region to the other. This is not due to deficiencies in the method, but

due to the nature of the mathematical system. As an example, consider a

system where the general solution to the differential equations includes a

function of the following form:

fRx) = cie÷az + c2e'bx (B-1)

Let us assume that the decreasing exponential represents the actual

solution, so that cl = 0. If our shooting algorithm chooses an initial value

equivalent to cl * 0 , it will include an exponentially increasing term as well

as the decreasing one. In order to successfully integrate the equation, that

increasing term must stay bounded in the interval of interest. Quite often,

it grows beyond the machine limits and the method fails.

This failure can show up in many ways, depending on the algorithm.

In some cases, a true floating point overflow occurs. In others, the matri-
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ces the algorithm is manipulating become ill-conditioned to the point that

the integration cannot continue. In any event, no solution is possible under

these circumstances.

Relaxation Method Overall Methodology. The relaxation method

overcomes this problem by always using solutions that meet the boundary

condition. This is a significant difference from the shooting method. In

both cases, we can consider that the methods are choosing the correct

solution from a set of possible solutions. With the shooting method, the

possible solutions are those that satisfy the differential equation system, but

may not satisfy the boundary conditions. The exact opposite is true for the

relaxation method; the possible solutions satisfy all boundary conditions,

but may not satisfy the differential equations (Presset alia, 1989:579). The

intersection of these two sets, of course, is the actual solution.

We can best see how this is done by examining the example that Press et

alia use (Press et alia, 1989:588-600)

Explanation of the Relaxation Method. Let us consider a simple first

order differential equation:

S= g(x,y) (B-2)

ax

We transform this into a system of finite difference equations over a grid of

points k. At interior points on the grid, we define

Ek -= Yk- Yk-i - (xk - Xk.1) gk(xkJxk-1,Yk,Yk-1) (B-3)

Now we come to the c- icial point in the concept: if the yk's were the actual

solutions, then the Ek's would be zero (within the limits of the approxima-

tion in replacing the differential equation with a difference equation).
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Initially, the y's are not solutions. Instead, we start with some initial

values for the yk's, which may or may not be close to the final solution, but

which do meet the boundary conditions. We then allow the algorithm to

find the values of all the yk's which reduces the total error (represented by

the Ek's) to a minimum. At that point, we have the solution (within the

limits of numerical approximation).

To do this, we treat each Ek as a function of the Yk'S, and expand in a

Taylor's series in Ayk. We can write this as

Ek•yk + Ayk,yk.i + Ayk-1) - Ek(yk,yk.1)
(B-4)

+ Ek aEk
+ -- Ayk- - + -- Ayk

(Note the notation change between this equation and Press et alia's 16.3.6;

we treat a single differential equation for simplicity, where they treat the

more general system of differential equations.)

Note that, to first order, we have found the correct solution when we

have

E~yk + AYk,Yk-1 + AYk-J) =0 r.B-5)

The remainder of the algorithm consists in finding the proper Yk's to bring

this about. We note that the boundary conditions give rise to similar, but

not identical, equations at the first and last points.

The algorithm uses five subroutines to do this: SOLVDE, BKSUB,

PINVS, RED, and DIFEQ. SOLVDE is the driver routine. It iteratively

finds the solution to Equation B-4 by using a modified form of Gaussian

elimination. For the general case, the system represented by Equations B-4

and B-5 can be described by a block diagonal matrix. SOLVDE calls DIFEQ
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(a user-supplied routine to calculate the derivatives in Equation B4) to

provide the current values of the derivatives, RED to eliminate leading

columns of each block in the matrix, PINVS to diagonalize the matrix, and

BKSUB to perform the back substitution and solve the system.

Note that Equation B-5 is based on a Taylor's series expansion that

retains only first order terms. Equation B-2 will generally have terms of

higher order than first. Therefore, the method generally requires repeated

iterations. SOLVDE keeps track of the total error and number of iterations.

It returns successfully if the total error is less than the supplied tolerance.

It returns unsuccessfully if the number of iterations exceeds the supplied

maximum.

The implementation in Press et alia has a number of sophisticated

features not discussed in detail here. For further details, we refer you to

that text ( Presset alia, 1989:588-611).

Strengths and Weaknesses of Relaxation. The greatest strength is its

ability to always satisfy the boundary conditions. It is especially good at

finding the correct solution when extraneous solutions exist which satisfy

the differential equations but not the boundary conditions (Presset alia,

1989:580-581). Since it chooses solutions only from those that meet the

boundary conditions, such extraneous solutions are excluded.

It is also very good for systems where the boundary conditions are in

some fashion difficult to handle. In such cases it can be more efficient than

shooting methods, even considering the complexity of solving a very large

linear system (Press et alia, 1989:580).
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The method is also quite flexible. Press et alia give examples of how to

use it to calculate not only the solutions to the differential equation, but also

to adapt the grid it is using at the same time (Press et alia, 1989.608-611).

They also discuss how it can be used to handle singularities (Press et alia,

1989-.611-614).

The method is not a panacea. It is essentially minimizing a multi-

variate function using first order methods. These methods are quite

adequate if the initial values of the function are "reasonably" close to the

final solution. However, if they are not, convergence can become quite slow

or even impossible. Because of this, it may not be the best choice for

systems which require repeated solution, but where the solutions have little

relationship to each other. However, as Press et alia point out, it can be

extremely powerful when the repeated solutions are closely related. In

those cases, the results of one calculation can be used as the initial values

for the next (Press et alia, 1989:581). In fact, that is exactly the situation we

saw in the present investigations.

In addition, relaxation does not handle non-smooth or oscillatory

solutions as well as shooting methods. Such problems generally require

adaptive grids for efficient solution. Relaxation can utilize adaptive grids.

However, it does not do so as well as shooting methods (Press et alia,

1989-580).

Brent Algorithm

The Brent algorithm (or more precisely, the Van Wijngaarden-Dekker-

Brent algorithm) is a general purpose root finder for certain types of one-
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dimensional problems. In particular, it solves problems with the following

characteristics:

1. The function depends on a single variable.

2. The derivatives of the function are unknown in closed form, or are
impractical to determine.

3. It is known that the solution lies between two values; that is, the

root has been bracketed.

For such problems, it is considered to be the best algorithm available (Press

et alia, 1989:252).

The algorithm is based on a combination of inverse quadratic interpola-

tion and bisection. It assumes the independent variable x to be a quadratic

function of y, and then uses that quadratic form to estimate the root of the

function. It keeps repeating this process as long as it is successful. The

process basically can fail for one of two reasons. Either the next value for x

is beyond the brackets for the root, or the solutions are converging too

slowly. If either of these occurs, the algorithm performs a bisection step by

dividing the bracketing region in half and starting over again in whichever

half is the new bracket for the root (Press et alia, 1989:251-254). It continues

until convergence is achieved, or the number of iterations is exceeded.
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Appendix D. Source Codes and Documentation

Introduction

This appendix contains a short description of the general layout of the

programs and the actual source code for each of the programs used in the

research. The only changes in the code are cosmetic ones, and additional

comments. There are no changes to the executable code itself. A short

discussion of each routine is included, as well.

General Discussion. The overall program flow for all the programs is

the same. The main program (dissoc, ext, wunderer, etc) is very short, and

serves mainly to call subroutines.

The first subroutine called is getparms. It reads in the input data from

the file "infile". The data includes housekeeping information about the

numerics, such as total number of grid points to use, number of output

points, convergence limits, output flags, and name of the output files. It

also includes data that establishes the overall discharge parameters:

radius, pressure, on-axis number density, and temperature profiles. The

gas parameters are defined in terms of the ionization potentials, diffusion

coefficients, the ionization frequencies and reaction rates, and the external

source rates.

The next subroutine called is "defprms". All the input values were

defined for a pressure of 1 Torr and an electron temperature of 1 eV. The

main purpose of defprms is to correct the input values of the various gas

parameters to be consistent with the actual values of pressure and
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temperature. It also initializes various arrays, including the variables

themselves.

The next significant call is to "solvde'. This is the Numerical Recipes

routine that actually performs the iteration. It makes calls to several

routines, including the user-supplied routine "difeq" that evaluates the

Jacobian of the differential equation system.

Once solvde has successfully solved the system, "outparms",

"outheader', and "output" are called to output input parameters, headers,

and the actual output data.

Note that not all the various versions of the programs perform all these

functions. The differences are primarily in the output routines. Dissoc,

ext, and wunderer generate complete density and flux information.

However, hene, yng, and von are used only to calculate electron

temperatures. For this reason, the exact program flow in hene changes

slightly to accommodate looping through changing gas mixes. In addition,

yng and von simply evaluate closed form expressions.

DISSOC

First we discuss the program dissoc. This is the code that was used for

the volume recombination and N 2÷-N4÷ cases. The minor differences

between the code for the first two cases and the last case are discussed as

they appear, below.

This code solves a system of five differential equations: the continuity

equations for the two ion fluxes, the momentum equations for N 2 and N.,

and the trivial equation AkT./ar = 0. It normalizes the equations by the on-

axis electron number density, so that the value of N.(O) is identically 1.
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That relationship constitutes one of the four boundary conditions; the other

four are zero values for the two ion fluxes on axis, and for the two number

densities at the edge of the discharge.

Most of the kinetics are straightforward. The only point to notice is that

the recombination rate has two different versions; one appropriate for

dissociative recombination which varies as kT. = 0.5, and one appropriate

for radiative recombination, which varies as kT. = 1.5. This causes

differences in defprms.f and difeq.f; the differences are noted in both places.

DISSOC.F. Dissoc.f is the source code for the main program itself. It

was identical for all the cases mentioned above.

program dissoc
c* Comments beginning "c*" are those added for this appendix. They are
added as free-form text, not as individually commented lines. The end of
each added comment is denoted by a line containing only "c***. The only
other changes were to some comment lines that were a single line in the
original source, but were too long to fit on a single line for this appendix.
These lines were broken into two separate comment lines.

c* The next line ensures that any typographical errors that produce new
variables are caught. With the unix f77 compiler, a runtime flag of "-u"
accomplishes the same thing. NKR's ftn compiler does not support that
flag.

implicit undefined (a-zA-Z)
integer m,ndy,ndx,ne,nb,itmax,nsi,nsj,nci,ncj,nck,errflag

c* Parameters are exactly as defined in Numerical Recipes. The values
chosen allow for 201 points in the physical mesh (m), a maximum of 5
dependent variables (ndy), 3 boundary conditions at x = 0 (nb), and a
maximum of 201 points in the physical mesh (ndx). The other parameters
are for various algorithmic limits.
C**

parameter(m=201,ndy=5,ne=5,nb=3,nsi=ne,ndx=mnsj=2*ne+1
$ ,nci=ne,ncj=ne-nb+1,nck=m+1)

real*8 x(ndx),y(ndy,ndx),s(nsi,nsj)
c* p is pressure, deltap and olp are to allow for a changing pressure (not
imlemented in the final code, but never removed).

real*8 p,deltap,oldp,c(nci,ncj,nck),slowc,scalv(ne)
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c* tival and tislope allow for changing temperatures in the plasma. xs is
the external source input parameter, and vi is the array of ionization
potentials.

real*8 tival(ndx),tislope(ndx),xs(ndy),vi(ndy)
common /ionparm/xs,vi
common /ticomm/ tival,tislope
common /fnparms/ss,dc,conv,neO,l,h5,x,nbg

c* errfiag is used to tell the calling routines that an error occurred. Used
primarily in debugging.

common /errblock/errflag
c* as is the array of the various collision frequencies. dc is the diffusion
coefficients. I is the cavity size (radius or half-width; radiua here). h5 is one
half of the delta in x. neO is the on-axis electron density. nbg is the
background number density.

real*8 ss(ndy),dc(ndy),conv,l,h5,neO,nbg
c* numout is the number of output points. numseg is the number of points
used in the mesh. pcount and pcountmax were used to implement
changing pressures. totit is used to keep track of how many iterations have
occurred. anflag is used to toggle output of the analytic solution used as the
starting point of the iterations. It is primarily used in debugging.

integer indexv(ndy),numout,numseg,i,pcount,pcountmax,totitanflag
c* outfilel and outfile2 are the text and plot output files
C**

character*20 outfilel,outfile2
c* getparms uses the file "infie" to get the initial data.
C**

call getparms (numseg,itmax,outfilel,outfile2,panflag,
$numout,slowc)

c* defprms adjusts the initial values of the parameters to the actual
plasma conditions specified, initializes a number of variables, and defines
several subroutines.
C**

call defprms(numsegp,indexv,scalv,y)
c* If anflag = 0, the analytic initial solution is not output.
C**

if (anflag.ne.0)then
call outheader(outfile l,outfile2,conv)
call output(numseg,y,numout,neO)
call outparms(numseg,p)

endif
c* The next line is used for debugging. It allows the entire iteration to be
skipped, with only (at most) the analytic solution output.
C**

c goto3O
totit=O

2D errflag = 0
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call solvde(itmax,conv,slowc,scalv,indexv,ne,nb,numseg
* ,y,ndyndx,cncincjncksnsinsj)

c* If solvde exceeds the maximum number of iterations, it cals errout to set
errflagal. The code allows the user to interactively determine whether to
continue the iteration (itmax <>0), end and output (itmax--0), or interrupt
(AC). It is often desirable to interrupt the program, so that the file nextit.for
is not updated with bad data.

if (errflagme.0)then
totit=totit+itmax
write(*,*)Total iterations so far = ',totit
write(*,*)'How many more to try?'
read(*,*)itmax
if (itmax.gt.0)goto2O

endif
c* outheader outputs header information.
C**

call outheader(outfile 1,outfile2,conv)
c* output outputs the data itself.
C**

call output(numseg,y,numoutneO)
c* outparms echoes some of the input parameters.
C**

call outparms(numseg,p)
3D continue
c* The endfile statements terminate the files after the last statement.
Otherwise, data from previous runs with longer output lengths will still
appear in the files. The close statements close the files.
C**

endfile (7)
endfile (8)endfile (9)
close(7)
dose(8)
close(9)
end

c* This routine is called by the Numerical Recipes codes. It is very simple,
but provides a hook for more complicated error routines.

SUBROUTINE ERROUT
COMMON/ERRBLOCK/ERRFLAG
INTEGER ERRFLAG
ERRFLAG=f1
RETURN
END

GETPARMS.F. Getparms does very little more than get input data.
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subroutim getparms(numseg-itmaxoutfilel,outffle2,p,aknflag

implicit undefined (a-zA-Z)
integer ndx~itmjaxndy,anflag
parameter(ndy=5,ndx=201)
6ea*8 conv,slowcp,tival(ndx),tislope(ndx)
common/ticomm/tival,tialope
commonlfhparmas/a,dc,conv,neO,l~h5,x,nbg
realB8 asndy),dc(nidy),neO,l,deltap,h5,x(ndi),nbg
re9*8 xs(ndy),vi(ndy)
common /ionparm/xs,vi
integer numsegnumoutji
character*20 outfilel,outffle2
open(7,FILE='infile' ,STATEJS='OLD')
rewind(7)
read(7 ,)uumseg
read(7,*)numout
read(7,*)itmxn-
read(7,*)conv
read(7,*)slowc
read(7,*)l

rea(7,*)neEJ
fread(7,*)ss( 1)
read(7 ,*)W2)
read(7,*)ss(3)
read(7 ,*)W4)
read(7,)xs( 1)
read(7,0)xs(2)
read(7,*)vi( 1)
read(7,*)vi(2)
read(7,*)dc(l)
read(7,*)dc(2)
read(7,*)dc(3)
read(7,*)tislope( )
read(7,*)tihlope(2)
read(7,*)p
read(7,*)anflag
read(7,*)outfilel
read(7,*)outfile2
close(7)
return
end

DEFPRMS.F. Defprms initializes variables, and recalculates

parameters to match the input values of pressure, size, and so forth.

c* The first two lines contain information for the Source Code Control
System, a unix utility to manag large programs.

D-6



C*.

c SCCS Release %I%
c SCCS Delta created %G%
c This is defprms.f for the N2-N4 systenm Volume ionization, associative
c charge transfer, and dissociative recombination.

subroutine defprms(numseg,p,indexv,scalv,y)
implicit undefined (A-Z,a-z)
integer ndy,ndx,numseg,i,nsj
paramet.r (ndy = 5, ndx = 201, ns = 3)
integer indexv(ndy)

c* lambdjO is the first zero of the Bessel function Jo. The other variables
will be explained where they are used.
C**

real*8 conv,nbg,p,scalv(*),h,y(ndy,ndx),ImbdjO,xfunc
integer errflag
real*8 ss(ndy),dc(ndy),neO,l,h5,x(ndx),kl,ti,xs,epsdiv
real*8 func,zbrent,bessjO,bessjl,kTe,s lkTes2kTe,rho,vi
real*8 kTeup
external funcs lkTe,s2kTe,zbrent,ti
parameter (lmbdjO = 2.4048255576958)
common/fnparms/ss,dc,conv,neO,l,h5,x,nbg
common honparm/ xs(ndy),vi(ndy)
common /errblock/errflag

c* This initialization is based on Numerical Recipes. The first three must
include 2, 3, and 4, and the last two must be 1 and 5. For some reason, the
order within each group seems to have significant effects on stability,
presumably because of the direction in which roundoff and truncation
errors are propagated.
C**

indexv(1) = 4
indexv(2) = 2
indexv(3) = 3indexv(4) =f 1
indexv(5) = 5

c First, we calculate the background number density from the pressure
c 3.1219E16 is N for 1 Torr, 300K

nbg = 3.2191E16*p
c Next, we adjust the diffusion coefficients for the density;,
c they are entered normalized to 1 T. We assume kTe=l.Oev.
c If we were to choose a different kTe, we would have to scale
c D sub e linearly with sqrt(kTe) to keep it accurate. However, notice
c that the calculations do not actually involve D sub e. It is not used
c in the normalization of ne, and we calculate Ge from G1 and G2 directly.
c We include D sub e only for completeness sake.

do 10 i = 1,ns
10 dc(i)=dc(i)/p
c S's also have to be adjusted for nbg.
c* Originally, ss was used for both external and N-dependent source terms.
Therefore, the comment below. Later, xs was added to separate the two
types of sources.
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c ****** In this case, we will look at N-dependent source terms only*****
c Therefore, ss(i) really represents various collision freqencies.
c We have [ss(1)*ne*nbg] = 1(cm*cm*cm*s), which implies
c [ss(1)*nbg] = 1/(s). We adjust for the various dependencies to get

se(1)- ss(1)*nbg*exp(vi(1)Yvi(1)*O.02585
c ss(2) would work exactly the same way for the second species.

ss(2) s0(2)*nbg*exp(vi(2)Yvi(2)*O.02585
c* ss(3) also describes ordinary charge transfer. The reactions described
are, of course, different, but the dependences on external parameters are
the same.
C**

c ss(3) is the "charge transfer" frequency that describes the production
c of the second ion species from the first by associative charge transfer.
c The reaction is N2+ + N2 + N2 -> N4+ + N2. We have
c [ss(3)*nbg*nbg*nl] = l/(cm*cm*cm*s) again, which is not equivalent to
c to ss(1) and ss(2). In fact, we get ss prop to (nbg/kTi)**2 to get

ss(3)=- ss(3)*p*p
c In this case, p == nbg/nbO; nbO--3.21926E16. ss(3) as input already
c includes nbO*nbO in it. We divide by (Ti(rho)*Ti(rho)) in difeq to account
c for temperature-induced changes in number density..
c* ss(4) is also used for radiative recombination in the VR case. The only
differences are different forms for the reactions (which change the
comments below) and a kTe**(-1.5) dependence for ss(4). Rather than
reproduce the entire source code, we merely note the difference. As
explained below, for an input kTe of 1.0 eV, the exact exponent on kTe does
not matter. The codes actually differ in difeq, however. The unix file
s.defprms.f contains both versions of defprms.f. Since only the comments
differ, the second version is not presented here.
C**

c Finally, we have ss(4), which describes the dissociative recombination
c loss
c term for species 2. The appriopriate reaction is
c N4+ + e- -> N2 + N2.
c We have (ss(4)*n2*ne]=f/(cm*cm*cm*s), which depends
c on none of the temperatures or pressures. Therefore, we need only adjust
c for the dependence of ss(4) itself, which depends on kTe**(-0.5). Since
c we input values for kTe=1.0, no adjustment it required. We put in a
c commented line anyway, just to help keep track.
c
c ss(4) = ss(4)
c Last thing we do is generate xs(3), the source term for electrons

xs(3) = xs(1)+xs(2)
do 5 i 1,3

5 xs(i) = xs(iYne0
c This corrects for the normalized electron density we're using.
c
c Now we check to see if we want analytic initial solutions, or to read
c in from the last time we ran the program. numseg = 1 => read'em in.

if (numseg.ne.1) then
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c ********TIS PART GENERATES THE INITIAL SOLUTIONS
c ANALYTICALLY*********
c First, we generate h and h/2.

h = II(numseg-1)
h5 = h/2.0

c Next, we initialize the constants for the initial solutions. We use
c the value of kTe at the edge of the discharge, even though our initial
c value for k1 is really from the center values. We do this because we
c want to make sure that we use the room temperature value for kTi.

c Here's the analytic solution for self-ionization
c* The next section of code uses the zbrent algorith from Numerical
Recipes to find the initial value of the electron temperature. kTeup is the
upper value that zbrent searches over. The code allows repeated searches,
with different values of kTeup, until the solution is bracketed. The correct
value of kTe can vary so widely that some interactive control was necessary.
c**

kTeup = 5.ODO
80 errflag = 0

kTe = zbrent(func, 1.0D-5,kTeup, 1.D-9)
ifjerrflag.eq. 1)then

write(*,*)'kTe in defprms = ',kTe,' enter new kteup'
read(*,*)kteup
if(kteup.ne.O.OD0)then

goto 80
else

stop
endif

endif
c* k1 is N1/N. for the proportional analytic solutions. slkTe and s2kTe are
functions that return vi for each of the two species, for a given temperature
and value of p/l.
C**

k1 = slkTe(kTe,1.0)*dc(2Y(slkTe(kTe,1.0)*dc(2)
$ +s2kTe(kTe,1.0)*dc(1))

c Next, we generate x(i). It is not vital to the relaxation process; we
c are using constant grid size. However, this way we only calculate it once.
c Note also that this version does not use any analytic current densities.
c Therefore, we do not calculate ge(i).
c* The calculation of x(i) is slightly contrived, to make sure that x(1) is
exactly 0.0, and x(numseg) is exactly 1.0. Simpler methods allow round-off
error at one end or the other.
c**

x(numseg) = 1
do 20 i=numseg-1,2,-1
x(i) = x(i+l)-h

20 continue
x(1) = 0.ODO
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c* The next do loop calculates the initial values for Y(ij)
C**

do 30 i=1,numseg
y(1,i) = kl*bessj0(x(i)/l*lmbdj0)
y(A2) = bessj0(x(i)l*lmbdj0)
y(3,i) = s lkTe(kTex(i/l)*/IlmbdjO*bessjl(x(i)/l*lmbdjO)
y(4,i) = s2kTe(kTex(i)/l)*1/lmbdjO*bessjl(x(i)/l*ImbdjO)
y(5i) = kTe

30 continue

else

c *******THS PART IS FOR READING IN THE SOLUTIONS
C*************

c* nextit.for stored the previous run's results. Often it was necessary to
approach the final solution gradually, b, starting with plasma conditions
close to those for the analytic solutions, and gradually adding the terms
that produced the non-analytic solutions. nextit.for stored the results from
one run to the next. It contained numseg on the first line, and then x(i) and
y(j,i) on each succeeding line.
C**

open(9, STATUS='UNKNOWN',FILE='nextit.for')
read(9,*)numseg
do 60 i=lnumseg
read(9,)x(i),(y(j,i)j= 1,ndy)

60 continue
h5 = (x(2)-x(1))*0.5
close(9)
endif

c ******NOW WE'RE BACK TO THE OVERALL INITIALIZATION
c **********$$$

c Finally, we initialize scalv, and indexv
c* Actually, indexv is initialized at the beginning. The comment never got
changed.
C**

scalv(1) = y(1,1)
scalv(2) = y(2,1)
scalv(3) = y(3,numseg)
scalv(4) = y(4,numseg)
scalv(5) = y(5,1)
return

c* Format 9999 was used for debugging.
C**

9999 format (lg10.4)
end

c* slkTe gives the external source as a function of kTe and rho=rIl. ti(rho)
is a function that give the position dependence (if any) of the ion and gas
temperature. kTi is the value of the ion temperature at the boundary, and ti
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is normalized such that ti(1.O)=1.O. Therefore, ti(1.O)*kTi is the value at the
edge, and it varies from there on. Variations in Te are handled by the
calling routine. The calculation is consistent with Von Engel's Appendix
3.

function slkTe(Te,rho)
imlcit udfnd(A-Z,a-z)

integer ndy,ndx
real*8 slkTe,Te,eps,ti,rho~xs~vi,kTi
parameter(ndy=-5,ndx=2O1,kTi=O0.O2585)
real*8 ss(ndy),dc(ndy),l,h5,conv,x(ndx),nbgneO
commonlfnparms/ss,dc,conv,neO ,l,h5 ,x,nbg
common /ionparmlxs(ndy),vi(ndy)
slkTezss( 1)*sqrt(Te)*exp(-vi(l1)fe)*vi( 1)(ti(rho)*kTi)
return
end

c* S2kTe does exactly the same thing for species 2.

function s2kTe(Te,rho)
implicit undefined (A-Z,a-z)
integer ndy,ndx
real*8 s2kTeTe,eps,rho,tilxs,vi,kTi

c external ti
parameter(ndy=-5,ndx=20 1,kTi=O0.02585)
real*8 ss(ndy),dc(ndy)lI,neO,h5,conv,x(ndx),nbg
commonifnparms/ss,dc,conv,neO ,1,h5 ,x,nbg
common fionparm/xs(ndy),vi(ndy)
s2kTe=ss(2)*sqrt(Te)*exp(-vi(2yrTe)*vi(2)/(ti(rho)*kTi)
return
end

c* func is the eigencondition given in Equation IV-49:

-7Xf + f.

X 2 = i(IV-49)

We evaluate it at the edge of the discharge, and in terms of the physical
quantities, as opposed to the non-dimensionalized ones used in Chapter IV.

function func(kTe)
implicit undefined (A-Z,a-z)
real*8 kTe,func,slkTe,s2kTe
integer ndy,ndx
real*8 M~
parameter (ndy-5,ndx=20 1,kTi=O.02585)
real*8 sis(ndy),dc(ndy),l,neO,h5,conv,x(ndx),nbg
commonlfnparms/ss,dc,conv,neO ,l,h5 ,x,nbg
func=5.7831859629468-kIM

$ *(slkTe(kTe, 1.ODO)*dc(2)+s2kTe(kTe,1.ODO)*dc(1))/
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$ (dc(1)*dc(2)*(kTi+kTe))*l*l
return
end

DIFEQ.F. Difeq i3 where the bulk of the physics is contained. The

subroutine has three sections. The first two handle the boundary

conditions at the center and edge of the discharge, and the third section

handles the rest of the discharge.

c* Again, the first two lines contain SCCS data.
C**

c SCCS id %I%
c SCCS release %G%

subroutine difeq(k,k 1,k2 jsfis 1,isfindexv,ne,s,nsi,nsj
1,y,nyj,nyk)
implicit undefined (a-z,A-Z)

c* We will explain the variables as they are used.
C**

integer k,kl,k2 jsfis 1,isfindexv(*),ne,nsi,nsj,nyj,nyk
integer ndx,ndy,ij
parameter (ndx=201,ndy--5)
real*8 s(nsi,nsj),y(ndy,ndx),nl,n3,gl,g2,divisor,n2,dl,d2
real*8 s 1,s2,s4,ds 1,ds2,ds4,s lkTes2kTe,xinv,tix,ti,rho,s3
real*8 ss(ndy),dc(ndy),neO,conv,l,h5,x(ndx),nbg,kTe,kTi,xfunc
real*8 xs(ndy),vi(ndy),te
common /ionparm/xs,vi
common /fnparms/ ss,dc,conv,ne0,l,h5,x,nbg

c Y(1,k) is ion one. Y(2,k) is electrons. Y(3,k) is ion current 1.
c Y(4,k) is ion current 2. Y(5,k) is kTe(l)

if (k.eq.kl)then
c* We are at the center of the plasma. y(2 ,1) is the electron density on axis,
which is normalized to 1.0. y(3,1) and y(4,1) are the particle fluxes, which
are identically zero. See Numerical Recipes for aa detailed explanation of
s(ij); at present, it is sufficient to note that s(ij,sf) is the expression that
equals 0 when the boundary condition is satisfied, and s(i,5+indexv(j)) is the
derivative of s(ijsf) with respect to variable j.
C**

s(3,5+indexv(2))=0.0
s(3,5+indexv(2))=O.0
s(3,5+indexv(3))=O.0
s(3,5+indexv(4))=O.0s(3,5+indexv(5))=0.0
s(3jsf) = y( 2 ,1)-1.0
s(4,5+indexv(1))=O.O
s(4,5+indexv(2))=0.0
s(4,5+indexv(3))=1.0
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s(4,5+indezv(4))=O.O
s(4,5+indexv(5))=O.O
s(4je) = y(3,1)
s(5,5+indexv(1))=O.O
s(5,5+indexv(2))--O.O
s(5,5+indexv(3))ffO.O
s(5,5+indexv(4))=1.O
s(5,5+indexv(5))=O.O
s(5jsf) = y(4 ,1)

c* We are now at the edge of the plasma. The two number densities are
identically 0 at that point.
C**

else if (k.gt.k2)then
s(1,5+indexv(1))=1.0
s(1,5+indexv(2))--O.0
s(1,5+indexv(3))=0.0
s(1,5+indexv(4))=0.O
s(1,5+indexv(5))=0.O
s(1jsf) = y(1rk2)
s(2,5+indexv(1))--O.O
s(2,5+indexv(2))=1.0
s(2,5+indexv(3))=O.O
s(2,5+indexv(4))=O.O
s(2,5+indexv(5))=O.O
s(2jsf) = y(2,k2)

else
c* Now we are in the interior of the plasma. rho is r/i. tix is used to keep
from having to repeatedly evaluate ti(rho). kTe is the electron temperature,
including any positional variation. Note that the differential equations
assume that y(5j) does not depend on position. The positional dependence
is accommodated here.
C**

rho = (x(k)+x(k-1))*0.5/l
tix = ti(rho)
kTe = 0.5*(y(5,k)+y(5,k-1))*te(rho)
kM = tix*0.02585

c* sl, s2, s3, and s4 are the collision frequencies for ionization of species 1,
ionization of species 2, charge transfer from 1 to 2, and recombination of 2.
dsl, ds2, and ds4 are the derivatives of sl, s2, and s4, respectively, with
respect to kTe.
C**

sl = slkTe(kTe,rho)
dsl = sl/kTe*(0.5+vi(l)/kTe)
s2 = s2kTe(kTe,rho)
ds2 = s2/kTe*(0.5+vi(2)kWe)
s3 = sa(3)(tix*tix)

c* The next two lines are where the differences between the two different
systems arise. The radiative recombination version, used for the VR case,
has the following lines:

94 = ss(4)/(kTe*sqrt(kTe))*neO
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ds4 =-s41./ker
instead of the ones below. s.difeq.f can be used to produce either version.
Given the slight difference, the entire second version will not be
reproduced.

94 = ss4y/sqrt(kTe)*neO
ds4 =-s4*0.5/kTe

c* Next, we define the physical variables, using centered differencing. g2
and g2 are the particle fluxes for species 1 and 2. n1, n2, and n3 are the
species 1, species 2, and electron particle densities, respectively. We could
not use ne for n3, since it represents the number of equations. We left ne
defined as it is in Numerical Recipes, to reduce confusion.

nl=-(y( ,k)+y( 1,k- 1))*O.5
n3=(y(2,k>4-y(2,k- 1))*O.5
n2=n3-nl
gl=-(y(3,k)+y(3,k- 1))*O.5

c~ xinvg2=-(y(4,k)+y(4,k- 1))*O.5
* dvand divisor are defined for convenience, and to speed up the code.

xinv=2.O/(x(k)+x(k- 1))
divisor = 1.O/(n3*n3*(kTe+tix))

c* dl and d2 are D, and D2, respectively.

dl = tix*tix*sqrt(tix)
c I'm using dl temporarily to store tix**2.5

d2 = dl*dc(2)
dl = d1*dc(l)

c* The s(iijsf) lines represent the differential equations. The other lines
represent the derivatives of the equations with respect to Yk and Yk+i.
Please see Numerical Recipes for details.

s(l ,indexv( 1)) = -1 .O-h5*kTe*(gdld +g2/d2Y1(n3*(kTe+kli))
s(l ,indexv(2)) = h5*n l*kTe*(gl~dl+g2/d2)*divisor
s(l1,indexv(3)) = -h5*(nl*kTe/(n3*(kTe+kTi))-1 .0)/di
s( 1,indexv(4)) = -h5*nl*kTe/(n3*(kTe+kTi))/d2
s( 1,indexv(5)) = -h5*nI~n3*tix*(gl/dl+g2./d2Yt

$ ((kTe+kTi)*(kTe+kTi))
s( l,5+indexv( 1)) = s(l ,indexv( 1))+2.O
s(1,5+indexv(2)) = s(1,indexv(2))
s(1,5+indexv(3)) = s(1,indexv(3))
s(1,5+indexv(4)) = s(l,indexv(4))
s(1,5+indexv(5)) = s(l,indexv(5))
s(ljsf) = y(1,k)-y(1,k.1)-2.O*h5*(n1*kTe/

$ (n3*(kTe+kTi))*(gJIdl+g2/d2)-gl/dl)
s(2,indexv(1)) = 0.0
s(24indexv(2)) = -1.0
s(2,indexv(3)) = h5*kTi/((kTe+kTi)*dl)
s(2,indexv(4)) = s(2,indexv(3))*dI/d2
s(2,indexv(5)) = -h5*(gl/dl+g2/d2)*kTi/((kTe+kli)*(kTe+kTi))
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9(2,5.eindexv(I)) = 0.0
s(2,5.indoxv(2)) = 1.0
s(2,5+indezv(3)) = s(24ndexv(3))
s(2,5...mdezv(4)) = s(2,indexv(4))
s(2,5+indexv(5)) = s(2,indexv(5))
s(2jaf0=y(2,k)-y(2,k-l1+2.0*h5*kTiI(kTe+kTi)*(gl/dl+g2./d2)
s(3,indezv(1)) = h5*s3

s(3,ndiexv(2)) = 0.0*9

s(3,indexv(5)) = -h5*n3*dsl
9(3,5+indexv(l)) = 9(3,indexv(l))
s(3,5+indexv(2)) = s(34ndexv(2))
s(3,5+indexv(3)) = 1.0+h5*idnv
s(3,5+indexv(4)) = 0.0
s(3,5+indexv(5)) = s(3,indexv(5))
s(3juf) = y(3,k)-y(3,k-1)-2.0*h5*(s1*n3

$ -s3*nl-gl*xinv+xfunc(l,rho))
s(44ndexv( 1)) = -h5*(s3+s4*n3)
s(44mdexv(2)) = -h5*(s2+s4*(nl-2.0*n3))
s(4,mndexv(U) = 0.0
s(4,indexv(4)) = -1.0+h5*xmnv
s(44ndexv(5)) = -h5*(n3*ds2+ds4*n3*(nl-n3))
s(4,5+indexv( 1)) = s(4,indexv(1))
9(4,5+indexv(2)) = s(4,indexv(2))
s(4,5+indexv(3)) = 0.0
s(4,5+indexv(4)) = 1.0+h5*xinv
s(4,5+indexv(5)) = s(4,indexv(5))
s(4jef) = y(4,k)-y(4,k- 1)-2.0*h5*(s2*n3+

$ s3*nl.s4*n3*n3+s4*nl*n3-g2*xinv+xfunc(2,rho))
s(5,,ndexv(l)) = 0.0
s(5,mdexv(2)) = 0.0
s(54ndexv(3)) = 0.0
s(5,mdexv(4)) = 0.0
s(5,indexv(5)) = -1.0
s(5,5+indexv(1)) = 0.0
s(5,5+indexv(2)) = 0.0
s(5,5+indexv(3)) = 0.0
s(5,5+indexv(4)) = 0.0
s(5,5+indexv(5)) = 1.0
s(5 jsf) = y(5,k)-y(5,k-1)

endif
return
end

TIFUNC.F. Tifunc provides for position-dependent values for kTe, k~l,

and the external source term.

function ti(x)

D1)5



impici unefied(a-zA-Z)
integer ndx
parameter (ndz = 201)
real*8 x,ti,tival(ndx),tislope(ndx)
common /ticomm/tival,tiolope

c ti =1.0
ti = tiSlope(1)*(1.-x)*(1.-x)+1.0
return
end

function te(z)
implicit uiadefined (a-zA-Z)
integer ndx
parameter (ndx = 201)
real*8 x,te,tival(ndx),tislope(ndx)
common /ticomm/tival,tislope
te = tiolope(2)*(l.-x)*(1.-x)+1.0
return
end

c* xfu~nc(i~rho) returns the positional dependenced of the i-th source
function. In these investigations, it returned a constant value. It was
included to allow for future positional variation, but the positional variation
was never included in dissoc.

function xfinc(i,rho)
implicit undefined (a-z,A-Z)
integer i~ndy
parameter (ndy=5)
real*8 rho,xs(ndy),xfunc,ti,vi(ndy)
external ti
common /ionparmlxs,vi
xfunc=xs(i)
return
end

OUTHEADER.F. Outheader prints out colulmn headings and the value

of cony. It also opens the outputffles.

subroutine outheader(outfile 1,outfile2,conv)
implicit undefined (a-z,A-Z)
character out~filel*20,outflle2*2O
real*8 cony
open(7,STATUS='UNKNOWN 1,FILE=outfile 1)
open(8,STATUS='UNKNOWN 1,FI]LE=outfile2)
open(9,STATUS='UNKNOWN',FIELE='nextit.for')
write(7,2000)conv
write(7,2001)

2000 formatCTolerance on relaxation is ',lpglO.3)
2001 format('x',10x,'nl',l0x,'n2',10x,'ne',l0x,'gl',10x,'g2',10x,ge')
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end

OUTPARMS.F. Outparns, prints out the values of some of the input

parameters.

subroutine outparms (numeeg,p)
imliit undefined (a-zA-Z)

integer ndyndx~ns
parameter(ndy=5,ndx=201,ns,=3)
integer numseg,i
real*8 pinbg
commonlfnparms/ss,dc,conv,neO ,1,h5 ,x,nbg
real*8 ss(ndy),dc(ndy),neO,l,h5,x(ndx),conv
write(7,*)'dc, cony, p, neO'
write(7,lOOOXdc(i),i=1ins)
write(7,1000)conv,p~neO

1000 format(8(1pg1O.3,:,','))
return
end

OUTPUT.F. Output prints out the data into outfilel and outffle2.

cSCCS SI]) %I%
subroutine output(numseg,y,numout)
implicit undefined (a-h,o-zA-HO-Z)
integer ndy,ndx,numout,numseg,i,counteri
parameter(ndy=5,ndx=20 1)
real*8 y(ndy,ndx),13,14,neO,slkTe,s2kTe,s4,kTe,xfunc
commonlfnparmslssi,dc,conv,neO ,l,h5 ,x,nbg
real*8 ss(ndy),dc(ndy),conv,l~h5,x(ndx),nbg,func,ti
real*8 nratio~nlsrc,n2src,srcrat,te,netot
external s lkTe,s2kTe,ti~xfunc~func,te
wrte9,*)numseg

kTe = Y(5,1)*te(0.ODO)
s4 = s04(4(sqrt(kTe)*kTe)
counter = max((numseg-1)/numout, 1)

c* The first do loop prints the densities and fluxes to outfili and outfile2.
Outfilel also includes additional information, printed out later in the
subroutine. Outfile2, which is intended for plotting results, does not.

do 10 i=1numseg,counter
write(7, 1000)x(i),y(l1,i)*neO,(y(2,i)-y(l1,i))*neO,y(2,i)*neO,

1 y(3,i)*ne0,y(4,i)*neO,(y(3,i)+y(4,i))*neO
write(8, 1000)x(i),y(l1,i)*neO,(y(2,i)..y( 1,i))*ne0,y(2,i)*neO,

1 y(3i)*neO~y(4,i)*neO,(y(3,i)+y(4,i))*neO
10) continue
c* netot is used in calculating the actual integrated current. The next loop
performs a simple-minded integration of 2icn(r)rdr over the area of the
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discharge, to obtain the value of netot, and prints out all the variables to
neztit.for for the next run of the program.

netot=0.0
do 20 i=1,numseg

2D write(9,3000)x(i),(yj~ij=1,ndy)
do 30 i=1,numseg-1
netot a netot + x(iY*6.2832 4y(2,i*(x(i+1)-x(i))

30 continue
write(7,2000)'Recombination coefficient at center = ',s4
write(7,2000)'Y ozbntion term at center = ',s4*y(2, 1)*neO

$ *(y(2,1)-y(1,1))*neO
write(7,2000)'CT term at center = ',ss(3)*y(1,1)*neO

$ I(ti(O.0)*ti(0.ODO))
write(7,2000YkIM(rho) at center = ',300.0*ti(0.ODO)
write(7,2000Y'slkTe at center = 'slk!Te(kTe,0.ODO)
nlsrc = slk~ek!TeO.ODO)*y(2,1)*neO
n2src = s2kTe(kTe,0.ODO)*y(2,1)*neO
write(7,2000)Ynl,n2 source at center = ',nlsrc,n2src
write(7,2000)Yexternal sources = ',xfunc( 1,0.0)*ne0

$ ,xfunc(2,0.ODO)*neO
c* We print out the eigencondition to help determine how well the solutions
match the Schottky solutions.

write(7,2000)'electron temperature at edge,eigencondition =

$ ,y(6 ,numseg),func(y(5 ,numseg))
c* nratio was a measure of nonproportionality, later discarded. The code
was not changed, since the runs were not repeated.

i=int(0.6*numseg+.5)
nratio = y(2,1)y2,i)*(y(2,i)-y(l,i)yI(y(2,l)-y(l,l))
write(7,2000)'nratio = ',nratio
write(7,2000Y'src ratio = ',s4*y(2,1)*(y( 2, 1)-y( 1,1))

$ *ne0*neO/n2s~rc
c Actual Ne tot is from numerical integration. Bessel is from assuming a
c Bessel (ie, Schottky) form for the solutions. This was added for
c Release 1.1.1.1, for Schmidt comparisons

write(7,2000)YNe total (actual) = 'netot*ne0
write(7,2000)'Ne total (Bessel) = ',1.356*neO*l*l
return

3000 format(fra.3,x5pg9.9,x))
2000 format ((a:),2(Ipg1O.3))
1000 format(f7.3,x,8( lpg1O.3,x))

end

MAKEFILE. Makefile is the file used by unix to generate the various

object files and executables. Little attempt will be made to explain this file;
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to those persons familiar with the make utility in unix, no documentation

should be necessary.

recipepath = $(HOME)/recipes/
diasoc: diasoc.o getparms.o defprms-o outheader.o\

outparms.o output~o difeq.o $(recipepath)solvde-o
$(recipepath)red.o $(recipepath)pmnvs-o $(recipepath)bksub.o\
$(recipepath)zbrent.o tifimc.o $(recipepath)bessjl.o\
$(recipepathlbessjO.o
ftn -o dissoc dissoc.o difeq.o getparm~s..o\
defprms.o outheaderno outparms.o output-o\
$(recapepath)solvde.o $Irecipepath)red~o $Irecipepath)pinvs.o\
$(recipepath)bksub.o $(recipepath)zbrent.o dtifuc.o\
$(recipepath)besajO.o $(recipepathlbessj 1.0

dissoc.o: dissoc.f
ftn -c -f(-02 dissoc.f

difeq.o: difeq.f
fbi -c -f -02 difeq.f

tifunc.o: tifunc.f
ftn -c -f(-02 tifunc.f

$(recipepath)solvde.o: $(recipepathlsolvde.f
fbi -c -f -02 $frecipepath)solvde.f

$(recipepath)piavs.o: $(recipepath)pinvs.f
fbi -c -f -02 $(recipepath)pinvs.f

$Irecipepath)red.o: $Irecipepath-)red.f
fbi -c -f(-02 $(recipepathlred.f

$(recipepath)bksub.o: $(recipepath)bksub.f
ftn -c -f(-02 $(recipepath)bksub.f

$(recipepath)zbrent.o: $(recipepath)zbrent~f
ftn -c -f -02 $(recipepath)zbrent.f

getparmas.o: getparms.f
fbi -c -f -02 getparms.f

defprms.o: defprms.f
ftn -c -f -02 defprms.f

newparams.o: newparams.f
fbi -c -f -02 newparams.f

outheader.o: outheader.f
fbi -c -f -02 outheader.f

output.o: output.f
ftn -c -f(-02 output~f

outparme.o: outparms.f
fbi -c -f -02 outparms.f

$(recipepath)besajO.o: $(recipepath)besojO.f
fbi -c -f(-02 $(recipepath)bessjO.f

$(recipepath)bessj 1.o: $(recipepath)bessj 1.f
ftn -c -f(-02 $(recipepath)besajl.f
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EAT

Next, we examine ext, which was the code used to examine systems

depending on external sources only. In particular, it was used for the XR

and XT cases. Much of the code is identical to the dissoc program,

discussed above. The most significant change is that we no longer have kT.

as an eigenvalue. Rather, it is a fixed input value. This reduces the

number of variables, differential equations, and boundary conditions from

five to four. The discussion below will only add comments to the original

source code that explain differences from dissoc.

EXT.F. Ext is the main routine for the program.

program ext
integer m,ndy,ndx,ne,nb,itmax,nsi,nsj,nci,ncj,nck,errflag

c* Note that we have only four variables (ne=4), not 5. For this system, kTe
is not an eigenvalue, and so is not included as a variable.
C**

parameter(m=201,ndy=4,ne=4,nb=2,nsi=ne,ndx=m,nsj=2*ne+1
$ ,nci=ne,ncj=ne-nb+1 ,nck=m+1)

real*8 x(ndx),y(ndy,ndx),s(nsi,nsj)
real*8 p,deltap,oldp,c(nci,ncj,nck),slowc,scalv(ne)
real*8 tival(ndx),tislope(ndx),xs(ndy),conv
common /extsrce/xs
common /ticomm/ tival,tislope
common /fnparms/ss,dc,kTe,neO,l,h5,x,nbg
common /errblock/errflag
real*8 ss(ndy),dc(ndy),kTe,l,h5,neO,nbg
integer indexv(ndy),numout,numseg,i,pcount,pcountmax,totit,anflag
character*20 outfilel,outfile2
call getparms (numseg,itmax,outfilel,outfile2,p,anflag,
$numout,slowc,conv)
call defprms(numseg,p,indexv,scalv,y)
if (anflag.ne.O)then

call outparms(numseg,p,conv)
call outheader(outfile 1,outfile2,conv)
call output(numseg,y,numout,neO)

endif
c goto3O

totit=O
20 errflag = 0

call solvde(itmax,conv,slowc,scalv,indexv,ne,nb,numseg
* ,y,ndyndx,cnci,ncj,nck,s,nsinsj)
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if (orrfiag~ne.O)then
totitutotit+itznax

vjfi(*,*)*Tota1 iterations so far = ',totit
write(*,*)'How many more to try?'
read(*,*itmay
if (itmaxr.gt.O)goto2O

endif
call outparms(nulmseg,p~conv)
call outheader(outfile 1,outfile2,conv)
call output(numseg,y,numout,neO)

30 continue
endfile (7)
endifie (8)

end-file (9)
close(7)
close(s)
close(9)
end

SUBROUTINE ERROUT
COMMON/ERRBLOCKIERRFLAG
INTEGER ERRFLAG
ERRFLAG= 1
RETURN
END

GETPARMS.F. Again, getparms gets the initial input parameters.

subroutine getparms(nuinseg,itmax,outfilel1,outfile2,p,anflag,
$numout,slowc,conv)
integer ndx,itmax,ndy~anflag
parameter(ndy=4,ndx=20 1)
real*8 kTe,slowc,p,tival(ndx),tislope(ndx)
commonlticommltival ,ti slope
commnonlfnparms/ss,dc,kTe,neO ,l,h5 ,x,nbg
real*8 ss(ndy),dc(ndy),neO,l,deltap,h5,x(ndx),nbg
real*8 xs(ndy),conv
common /extsrce/xs
integer numseg,numoutji
character*20 outfile 1,outfile2
open(7,FILE='infile' ,STATUS='OLD')
rewind(7)
read(7,*)numseg
read(7 ,*)numout
read(7,*)itmax
read(7,*)conv
read(7,*)slowc
read(7,*)l
read(7 ,)neO
read(7,*)kTe
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read(7,*)ss(1)
read(7,*)ss(2)
read(7,*)ss(3)
read(7,*)ss(4)
read(7,*)xs(1)
read(7,*)xs(2)
read(7,*)dc(1)
read(7,*)dc(2)
read(7,*)dc(3)
read(7,*)tialope(1)
read(7,*)p
read(7,*)anflag
read(7,*)outfilel
read(7,*)outfile2
close(7)
return
end

DEFPRMS.F. A. before, defprms initializes the system.

subroutine defprms(numseg,p,indexv,scalv,y)
integer ndy,ndx,numseg,i,nsj
parameter (ndy = 4, ndx = 201, ns = 3)
integer indexv(ndy)
real*8 nbg,pscalv(*),h,y(ndy,ndx),lmbdj0,xfunc
commonlfnparms/ss,dc,kTe,ne0,1,h5,x,nbg
common / extsrce/ xs(ndy)
real*8 ss(ndy),dc(ndy),neO,l ,h5,x(ndx),kl,ti,xs,epsdiv
real*8 zbrent,dbesj0,dbesj 1,kTe,slkTe,s2kTe,rho
external s lkTe,s2kTe,zbrent,ti
parameter (lmbdj0 = 2.4048255576958)
indexv(1) = 3
indexv(2) = 4
indexv(3) = 1
indexv(4) = 2

c First, we calculate the background number density from the pressure
c 3.1219E16 is N for 1 Torr, 300K

nbg = 3.2191E16*p
c Next, we adjust the diffusion coefficients for the density-,
c they are entered normalized to 1 T. We assume kTe=l.Oev.
c If we were to choose a different kTe, we would have to scale
c D sub e linearly with sqrt(kTe) to keep it accurate. However, notice
c that the calculations do not actually involve D sub e. It is not used
c in the normalization of ne, and we calculate Ge from G1 and G2 directly.
c We include D sub e only for completeness sake.

do 10 i = 1,ns
10 dc(i)=dc(i)/p
c* Note an important distinction between ext and dissoc. Since ext does not
need the eigencondition tVat dissoc does, it does not have to adjust the
temperature in defprms to get the analytic initial values.
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There is another important distinction as well. ext assumed a value of
15.5 eV for the ionization potential of all species. This simplified the code in
what was, after all, a model of idealized gases. dissoc needed to treate
physically realistic gases, and so it included vi(i) as an input. The
normalization constant below for ss(1) and ss(2) includes the ionization
potential, where the equivalent normalization for dissoc uses vi(i) explicitly.
C**

c S's also have to be adjusted for nbg.
c ****** In this case, we will look at N-dependent source terms only****
c Therefore, ss(i) really represents various collision freqencies.
c We have [ss(1)*ne*nbg] = 1L(cm*cm*cm*s), which implies
c [ss(1)*nbg] = O(s). We adjust for the various dependencies to get

ss( 1)= ss(1)*nbg*5.389698476E6
c ss(2) would work exactly the same way for the second species.

ss(2)= ss(2)*nbg*5.389698476E6
c ss(3) is the "charge transfer" frequency that describes the production
c of the second ion species from the first. We have
c [ss(3)*nbg*nbg*nl] = 1/(cm*cm*cm*s) again, which is not equivalent to
c to ss(1) and ss(2). In fact, we get ss prop to (nbg/kTi)**2 to get

ss(3)= ss(3)*6.9246E29
c 6.9246E29 is nbO*nbO*ktO*ktO; we divide by (kTi*kTi) in difeq
c* This normalization is actually mistake?; it does not account for
pressure differences. We should multiply by Nb , not by nbO*nbO. This was
not discovered until after all calculations were finished and analyzed.
Since the analysis was based on the calculated value of the charge transfer
rate, not the input one, the error had no effect, and therefore was not
corrected here. It was corrected in the version of defprms.f used with
dissoc; otherwise, the calculations for Schmidt would have been incorrect.
C**

c Note that we have to carefully define what we mean by this; the value of
c ss(3) will depend heavily on the partial pressures of the various gases.
c Finally, we have ss(4), which describes the dissociative attachment loss
c term for species 2. We have [ss(4)*n2*ne]=l/(cm*cm*cm*s), which
c depends
c on none of the temperatures or pressures. Therefore, we need only adjust
c for the dependence of ss(4) itself, which depends on kTe**(-0.75). Since
c we input values for kTe=1.0, no adjustment it required. We put in a
c commented line anyway, just to help keep track.
c
c ss(4) = ss(4)
c Last thing we do is generate xs(3), the source term for electrons

xs(3) = xs(1)+xs(2)
do 5 i= 1,3

5 xs(i) = xs(i)/neO*p
c This corrects for the normalized electron density and the actual pressure;
c we input xs for p= 1.0 Torr.
c
c Now we check to see if we want analytic initial solutions, or to read
c in from the last time we ran the program. numseg = 1 => read'em in.

if (numseg.ne.1) then
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c *********T*S PART GENERATES THE INITIAL SOLUTIONS
c ANALYTICALLY*********
c First, we generate h and h/2.

h = I/(numseg-1)
h5 = h/2.0

c Next, we initialize the constants for the initial solutions. We use
c the value of kTe at the edge of the discharge, even though our initial
c value for k1 is really from the center values. We do this because we
c want to make sure that we use the room temperature value for kTi.
c This is the volume solution for external uniform sources

x(numseg) = 1
do 40 i = numseg-1, 2, -1
x(i) = x(i+l)-h

40 continue
x(l) = O.ODO
do 50 i = 1, numseg
rho = x(i)/l
epsdiv = 0.02585*ti(rho)/( 1.0+0.02585*ti(rho))
y(1,i) = epsdiv*xfunc( 1,rho)/dc( 1)*(l*l-x(i)*x(i))/4.0
y(2,i) = y( 1,i)/xfunc( 1,rho)*dc( 1)*(xfunc( 1,rho)/dc(1)

$ +xfunc(2,rho)/dc(2))
y(3,i) = xfunc(1,rho)*x(i)/2.0
y(4,i) = xfunc(2,rho)*x(i)/2.0

50 continue
c Now we exit the analytic solutions loop

else

c *******THIS PART IS FOR READING IN THE SOLUTIONS

open(9, STATUS='UNKNOWN',FILE='nextit. for')
read(9,*)numseg
do 60 i=l,numseg
read(9,*)x(i),(y(j,i)j= 1,ndy)

60 continue
h5 = (x(2)-x(1))*0.5
close(9)
endif

c ******NOW WE'RE BACK TO THE OVERALL INITIALIZATION

c Finally, we initialize scaly
scalv(1) = y(1,1)
scalv(2) = y(2 ,1)
scalv(3) = y(3,numseg)
scalv(4) = y(4,numseg)
do 70 i=1,4

70 if (scalv(i).eq.0.0) write(*,*)'scalv = 0; i= ',i
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return
9999 format (lglO.4)

end

function slkTe(Te,rho)
integer ndy,ndx
real*8 slkTe,Te,eps,ti,rho,kTi

C * external statement was used for debugging. It turned out to be
unnecessary, so it was commented out. It is much easier to uncomment a
line than to rewrite it.

c external ti
parameter(ndy-=4,ndx=2O1,kTi=O0.O2585)
commonlfnparmslss ,dc,kTe ,neO ,1,h5 ,x,nbg
real*8 ssi(ndy),dc(ndy),l,h5,kTe~x(ndx),nbg,neO

c* Note that the V, dependence is already included in the normalization.

s lkTe=ss( )*sqrt(Te)/(ti(rho)*kTi)*exp(- 15.5flTe)
return
end

function s2kTe(Te,rho)
integer ndy,ndx
real*8 s2kTe,Te,eps,rho,ti,kTi

c external ti
parameter(ndy=4,ndx=20 1,kTi=O.02585)
commonlfnparms/ss ,dc,kTe ,neO ,l,h5 ,x,nbg
real*8 ss(ndy),dc(ndy),l,neO,h5,kTe,x(ndx),nbg
s2kTe=ss(2)*sqrt(Te)/(ti(rho)*kTi)*exp(. 15.5/Te)
return
end

DIFEQ.F. This version of difeq is essentially the same as dissoc's

version, except for the differences noted. The primary difference is the

reduction from five variables to four.

subroutine difeq(k,kl ,k2jsf~is 1,isf~indexv~ne,s,nsi,nsj
1 ,y,nyj,nyk)
integer k,kl ,k2 jsf~isl1,isf~indexv( *),ne,nsi ,nsj ,nyj ,nyk
integer ndx,ndy,ij

c* Note; 4 variables instead of 5.

parameter (ndx=20 1,ndy=4)
real*8 s(nsi,nsj),y(ndy,ndx),n 1,n3,gl~g2,divisor,n2,dl1,d2
real*8 s 1,s2,s4,ds 1,ds2,ds4,s lkTe,s2kTe,xinv,tix,ti~rho,s3
common /fnparms/ ss,dc,kTe,neO,l,h5,x,nbg
real*8 ss;(ndy),dc(Ddy),neO,l,h5,x(ndx),nbg,kTe,kTi,xfunc

c Y(1,k) is ion one. Y(2,k) is electrons. Y(3,k) is ion current 1.
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c Y(4,k) is ion current 2.
c* Boundary conditions: densities =0 at the edge, fluxes =0 at the center.

if (keq~kl)then
s(3,4+indexv( 1))=-O.O
s(3,4+indexv(2))=-O.O
8(3,4+indexv(3))=l.O
s(3,4+indexv(4))=O.O
s(3jef) = y(3,1)
s(4,4+indexv( 1))=0O.0
s(4,4+indexv(2))=0O.O
s(4,4+indexv(3))=-O.0
s(4,4+indexv(4))=1.O
s(4~js)= y(4,1)

else if (k.gt.k2)then
s( 1,4+indezv( 1))= 1.0
s( 1,4+indexv(2))=0O.0
s( 1,4+indexv(3))=0.0
s( 1,4+indexv(4))=0.O
s(lisf) = y(l,k2)
8(2,4+indexv( 1))=0.0
s(2,4+indexv(2))=1.0
s(2,4+indexv(3))=0O.0
s(2,4+indexv(4))=0.0
s(21jsf) = y(2,k2)

else
rho = (x(k)+x(k-1))*0.5/1
fix = ti(rho)
kMi = tix*0.02585
si = slkTe(kTe,rho)
dsl = sl/kTe*(0.4+15.5/kTe)
s2 = s2kTe(kTe,rho)
ds2 = s2/kTe*(0.4+15.5/kTe)
s3 = ss(3yt~tx*tix)
s4 = ss(4Y((sqrt(kTe)*kTe)*neO
cds4 =-s4*1.5/k~e
nl=-(y( 1,k)+yQ ,k- 1))*O.5
n3-(y(2,k)+y(2,k- 1))*0.5
n2=n3-nl
g1l=(y(3,k)+y(3,k- 1))*0.5
g2-(<y(4,k)+y(4,k- 1))*0.5
xinv=2.O/(x(k)+x(k- 1))
divisor = l.0/(n3*n3*(kTe+tix))
dl = tix*tix*sqrtjti)

c I'm using dl temporarily to store tix**2.5
d2 = dl*dc(2)
dl = dl*dc(l)
s( l,indexv( 1)) = -1.0-h5*kTe*(gl/dl+g2/d2y((n3*(kTe+k~i))
s~lindexv(2)) = h5*nl*kTe*(gl/dl+g21d2)*divisor
s( lmidexv(3)) = -h5*(nl*kTe/(n3*(kTe+kTi))-1.0Oyd1
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sg14ndexv(4)) = -h5*nlkfJW(n3*(kTe+kTi)Ytd2
s(1,4+indexv(l)) = s(1,ndxv1))+2.O
s(1,4+indexv(2)) = s(1indev2))
s(1,4+indexv(3)) = s(l,indexv(3))
s(1,4+indexv(4)) = s(l,indexv(4))
sW4sf = y(1,k)-y(1,k.1)-2.0*b5*(n1*kTe/

$ (n3*(if~kj))*(g1Jd1+g2/d2)-gi/d1)
s(2,indexv(l)) = 0.0
s(2,indexv(2)) = -1.0
s(2,indexv(3)) = h5*kJi((kTe~kfp)*dl)
s(2,indexv(4)) = s(2,indexv(3))dl/d2
s(2,4+indexv( 1)) = 0.0
s(2,4+indexv(2)) = 1.0
s(2,4+indexv(3)) = s(2,indexv(3))
s(2,4+indexv(4)) = s(2,indexv(4))
s(2jsf)=-y(2,k)-y(2,k- 1)+2.0*h5*kTi/(kTe+kTi)*(gI/dl+g2/d2)
s(3,indexv(l)) = WO*s
s(3,indexv(2)) = -h5*sl
s(3,indexv(3)) = -1.0+h5*xinv
s(3,indexv(4)) = 0.0
s(3,4+indexv(l)) = s(3,indexv(l))
s(3,4+indexv(2)) = s(3,indexv(2))
s(3,4+indexv(3)) = 1.0+h5*ximv
s(3,4+indexv(4)) = 0.0
s(3jsf) =y(3,k)-y(3,k-l)-2.0*h5*(sl*n3

$ s3*n1-g1*xinv+xfunc(1 ,rho))
s(4,indexv(1)) = -h5*(s3+s4*n3)
s(4,indexv(2)) = -h5*(s2+s4*(nl-2.0*n3))
s(4,indexv(3)) = 0.0
s(4,indexv(4)) = -1.0+h5*xinv
s(4,4+indexv(l)) = s(4,indexv(1))
s(4,4+indexv(2)) = s(4,indexv(2))
s(4,4+indexv(3)) = 0.0
s(4,4+indexv(4)) = 1.0+h5*xinv
s(4,jsf) = y(4,k)-y(4,k- 1)-2.0*h5*(s2*n3+

$ edf s3*nl5s4*n3*n3+s4*n 1*n3-g2*xinv+xfunc(2,rho))

return
end

OUTHEADER.F. This is very similar to the dissoc version.

subroutine outheader(outfile 1,outfile2,conv)
character outfilel*20,outfile2*20
real*8 cony
open(7,STATUS='UNKNOWN',FILE=outfile 1)
open(8,STATUS='UNKNOWNXFILE=outfile2)
open(9,STATTJS='UNKNOWN',FILE='nextit.for')
write(7,2000)oonv
write(7,2001)
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2000 formatCrolerance on relaxation is ',lpglO.3)
2001 edformat('x', l0x,'nl 1, lx,'n2', l0x,'ne', l0x,'gl' , lx,'g2' , lx,'ge')

OUTPARMS.F. This is also simliar to the dissoc: version.

subroutine outparms (numseg,p~conv)
integer ndy~ndx,ns
param tr(ndy=4,ndx=201,ns=-3)
integer nu~mseg,i
real*8 p~nbg
commonlfnparms/ssa,dc,kTe,ne0 ,l,h5 ,x,nbg
real*8 ss(ndy),dc(ndy),ne0,l,h5,x(ndx),conv,kTe
write(7,*)'dc, cony, p, neO'
write(7, lOOOXdc(i),i=1,ns)
write(7, 1000)conv,p,neO

1000 format(8(lpg1O.3,:,','))
return
end

OUTPUT.F. Again, similar to the dissoc: version.

subroutine output(numseg,y,nulmout)
integer ndy,ndx,numout,numseg,i,counterj
parameter(ndy=4,ndx=20 1)
real*8 y(ndy,ndx),13,14,neO,slkTe,s2kTe,s4,xf'unc
commnonlfnparms/ss,dc,kTe,neO,l,h5 ,x,nbg
real*8 ss(ndy),dc(ndy),kTe,l,h5,x(ndx),nbg~func,ti
real*8 efield,kTi
external slkTe,s2kTe,ti,xfinc
write(9,*)numseg
s4 = ss4)/(sqrt(kTe)*kTe)
counter = max((numseg-U1)numout, 1)
do 10 i=1,numseg-1,counter
k~l = ti(x(i))*0.02584

c* ext included the electric field in the output. It turned out it was easier to
calculate it in the plotting package, since it is a simple function of the other
variables. Therefore, this term was dropped from dissoc and the other
programs.

efield = (y(3,i)/dc(l 1y4,i)/dc(2))*kTily(2,i)/( 1.+kTilkTe)

1 y(3,z*neO~y(4,i)*neO,(y(3,i)+y(4,i))*ne0
write(8,1000)x(i),y(l1,i)*ne0 ,(y(2i)-y(l1,))*neO,y(2,i)*neO,

1 y(3i)*neO~y(4,i)*neO,(y(3,i)+y(4,i))*neO,efield
10 continue

write(7,1000)x(numseg),y(1,numseg)*neO,(y(2,numseg)-y( 1,numseg)
1 )*neO~y(2,numseg)*neO,y(3,I)*neO,y(4,i)*neO,(y(3,i)+y(4,i))*neO
write(8,1000)x(numseg),y( 1,numseg)*neO,(y(2,numseg)-

y(l1,numseg))*neO
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1 ,y(2,numseg)*neo,y(3,i)*neO,y(4,i)*neO,(y(3,i)+y(4,i))*neO,efield
do 20 i=1,numseg

write(7,2000Recombination term at center = ',s4*Y(2, 1)
$ *neO*(y(2,1)-y(I,1))*ne0

write(7,2000YCT term at center = ',ss(3)*y(1,1)*ne0
write(7,2000'kM(rho) at center = ',300.O*ti(O.O)
write(7,2000)'nl volume source at center = ',slkTe(kTe,0.0)*y(2,1)*neO
write(7,2000)'n2 volume source at center = ',s2kTe(kTe,O.O)*y(2,1)*neO
write(7,2000)Yelectron temperature = ',kTe
write(7,2000Yn1 external source at center = ',xfimc(1,O.O)*ne0
write(7,2000)Yn2 external source at center = ',xfimc(2,O.O)*ne0

c* Again, this measure of non-proportinality was eventually not used.

i = int(0.6*numseg)+l

c write(*,*)i,x(i)
write(7,*)'non-proportionality ratio,

$y(1, lYy(2,1)*y(2,i~y( 1,)
return

3000 format(f65.3,x,5(1pg16.9,x))
2000 format ((a:),lpglO.3)
1000 fbrmat(fr6.2,x,8(1pg10.3,x))

end

TIFUNC.F. Note that the program allows for temperature variation,

although it was not used.

function ti(x)
integer ndx
parameter (ndx = 201)
real*8 x,ti,tival(ndx),tislope(ndx)
common /ticommltival,tislope

C ti =1.0
ti = tislopeM1*(1..x)(1..x)+1.0
return
end

function xfunc(i,rho)
integer i,ndy
parameter (ndy=4)
real*8 rho,xs(ndy),xfunc
common /extsrce/xs
xfunc=xs(i)
return
end
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MAKEFILE. We do not include the makefile, as it has not significant

differences from dissoc's.

Hene was the program used to calculate the electron temperatures for

neon-helium mixes. It is similar to dissoc, but with some significant

changes, as discussed below. In addition, the programs yng and von are

used to duplicate published results from Von Engel and from Young. This

allowed an accurate comparison of the new model's results to previous

results, without trying to extract data from published graphs.

HENE.F. The biggest difference between hene and the previous codes is

that hene allows the gas mix to change. Much of the initialization that

dissoc did via defprms.f involved gas mixture-dependent values. This part

of the initialization was moved to a module called newparms.f so that it

could be conveniently repeated for each new gas mix.

Hene produces the solution for the original gas. calls newparams to

change the mix, and then repeats until it has produced a solution for the

opposite extreme of pure gas again.

program hene
implicit undefined (a-z,A-Z)
integer m,ndy,ndx,ne,nb,itmax,nsi,nsj,nci,ncj,nck,errflag
parameter(m=201,ndy=5,ne=5,nb=3,nsi=ne,ndx=m,nsj=2*ne+1

$ ,nci=ne,ncj=ne-nb+1 ,nck=m+1)
real*8 x(ndx),y(ndy,ndx),s(nsi,nsj),frac
real*8 p,deltap,oldp,c(nci,ncj,nck),slowc,scalv(ne)
real*8 tival(ndx),tislope(ndx),xs(ndy),vi(ndy)
common /ionparm/xs,vi
common /ticomm/ tival,tislope
common /fnparms/ss,dc,conv,neO,l,h5,x,nbg
common /errblock/errflag
real*8 ss(ndy),dc(ndy),conv,l h5,neO,nbg
integer indexv(ndy),numout,numseg,i,pcount,pcountmax,totit,anflag
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character*20 outfilel,outfile2
c* numout is now the number of different gas mixes to include, not the
number of points in the x mesh to use.

call getparms (nulmseg,itmax,outfilel1,outfile2,p,anflag,
$numout~slowc)
call defprms(numseg,p,indexv,scalv,y)

c* defprms, does only those initializations, that do not depend on gas mix.
outheader and outparms are called at the beginning, before the mix
changes.

call outheader(outfile 1,outfile2,conv)
call outparms(numseg,p)
do 40 i=0Onumout

C* frac: is the Nbg1fNbgTr.

frac =1 .0-float(i)/numout
c* newparams adjusts for the current fraction of species one.

call newparams(y,scalv,frac,numseg)
totit=0

2D errflag=O0
call solvde(itmax,conv,slowc,scalv,indexv,ne,nb~numseg
*,y,ndy~ndx,c,nci,ncj,nck,s,nsi,nsj)

if (errflag.ne.O)then
totit--totit+itmax

writ(*,*)'Tota iterations so far = ',totit
write(*,*)'How many more to try?'
read( * ,*)itmax
if (itmax.gt.0)goto2O

endif
c*' Note that, instead of passing numout to output, we call output numout
times from hene.

call output(frac,y)
40 continue

endfile (7)
endfile (8)
endfile (9)
dlose(7)
close(8)
close(9)
end

SUBROUTINE ERROUT
COMMON/ERRBLOCK/ERRFLAG
INTEGER ERRELAG
ERRFLAG= 1
RETURN
END
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GETPARMS.F. Getparms, changes to add more diffusion coefficients.

Not only do we need the diffusion coefficient for He* in He and Ne* in Ne, we

need the coefficients for He* in Ne and Ne4 in He. getparms was changed to

accommodate.

subroutine getparms(numseg,itmaxr,outfilel1,outfile2,p,anflag,
$numout~slowc)
implicit undefined (a-zA-Z)
integer ndx,itmax,ndy,anflag
parameter(ndy=-5,ndx=20 1)
realB8 conv,slowc,p,tival(ndx),tislope(ndx)
commonlticommltival, ti slope
commonlfnparmslss,dc~conv,neO ,I ,h5,x ,nbg
realS8 ss(ndy),dc(ndy),neO,l,deltap,h5,x(ndx),nbg

integer numseg,numout,i
character*20 outfilel1,outflle2
open(7,FELE='infile',STATUS='OLD')
rewind(7)
read(7 ,*)numseg
read(7 ,)numout
read(7,*)itmax
read(7,*)conv
read(7 ,*)slowc
read(7 ,*)l
read(7,*)neO
read(7,*)ss( 1)
read(7,)ss(2)
read(7,*)ss(3)
read(7 ,*)ss(4)
read(7,*)xs( 1)
read(7,*)xs(2)
read(7,*)vi( 1)
read(7,*)vi(2)
read(7,*)dc( 1)
read(7,*)dc(2)

c* We will explain the meaning of dc(3) and dc(4) in newparams.f
re d(*d c 3
read(7,*)dc(3)
read(7,*)isop( 1)
read(7,*)tislope(l)
read(7,*)p
read(7,*)anflag
read(7,*)outfilel
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read(7,*)outfile2
cloW7)
return
end

FREQCOMPLEX.F. We had originally used Von Engel's approximate

form, as in his Appendix 3. However, this form is only appropriate for

cases where the kTe/e is small compared to Vi. This condition did not hold

for this system. Therefore, we pulled the slkTe, s2kTe, and func routines

out of defprms.f and placed them in a separate file, freq.f. We had two

versions of freq.f. One, called freqsimple.f, used the original functions, so

we could match Von Engel's results for pure helium and pure neon. The

other version, called freqcomplex.f, had the physically more accurate

version.

function slkTe(Te,rho)
implicit undefined (A-Z,a-z)
integer ndy,ndx
real*8 slkTe,Te,eps,ti,rho,xs,vi,kTi
parameter(ndy=5 ndx=201,kTi=0.02585)
real*8 ss(ndy),dc(ndy),l,h5,conv,x(ndx),nbg,neO
common/fnparms/ss,dc,conv,neO,l,h5,x,nbg
common /ionparm/xs(ndy),vi(ndy)

c* Note the difference; in dissoc, we had vi(1), where here we have
(2.0*Te+vi(1). defprms.f is changed also, to accommodate the changed
normalization.
c**

slkTe=ss(1)*(2.0*Te+vi(1))*sqrt(Te)*exp(-vi(1)/Te)/(ti(rho)*kTi)
return
end

function s2kTe(Terho)
implicit undefined (A-Z,a-z)
integer ndy,ndx
real*8 s2kTe,Te,eps,rhoti,xs,vi,kTi

c external ti
parameter(ndy--5ndx=201,kTi=0.02585)
real*8 ss(ndy),dc(ndy),l,neO,h5,conv,x(ndx),nbg
common/fnparms/ss,dc,conv,neO,l,h5,x,nbg
common /ionparm/xs(ndy),vi(ndy)

c* We have the same change here.
C**
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s2kleress(2)*(2.O*Te+vi(2))*sqrt(Te)*exp(-vi(2)/Te)/(ti(rho)*kTi)
return
end

c* func is identical to the dissoc version.

function func(kTe)
implicit undefined (A-Z,a-z)
real*8 kTeXfunc,slkTe,&Zke
integer ndy,ndx
real*8 kTi
paramete (ndy=-5,ndx=20 1,k7I=O.02585)
real*8 ss(ndy),dc(ndy),l,neO~h5,conv,x(ndx),nbg
commonlfnparms/ss,dc,conv,neO ,l,h5 ,x,nbg
fumc=5.7831859629468-k'n'

$ *(l ek 1~.ODO)*dc(2 )+s2kTe(kTe,1.ODO)*dc( 1))/
$ (dc( 1)*dc(2)*(kTi+kTe))*1*l

return
end

DEFPRMSN.F. As noted above, we placed three functions in a separate

source file. We also moved several operations from defprms to newparams.

Finally, we changed the normalizations of ss(1 and ss(2). The source with

the new normalizations (corresponding to freqcomplex.f) is called

defprmsn.f, for "new". With the old normalizations, the source is called

"defprmso.f'.

subroutine defprms(numseg,p,indexv,scalv,y)
implicit undefined (A-Z,a-z)
integer ndy,ndx,numseg~i,nsj
parameter (ndy =5, ndx =201, ns = 4)
integer indexv(ndy)
real*8 conv,nbg,p,scalv(*),h,y(ndy,ndx),lmbdjO~xfunc
integer errflag
real*8 ss(ndy),dc(ndy),neO,lIh5,x(ndx),kl~ti,xs,epsdiv
rel* func,zbrent,bessjO,bessj 1 kTe,s lkTe,s2kTe,rho,vi
real *8 kTeup
external func,s lkTe,s2kTe,zbrent,ti

paraeter(ImbdjO = 2.4048255576958)
commonlfnparms/ss,dc,conv,neO,l,h5 ,x,nbg
common /lonparznl xs(ndy),vi(ndy)
common /errblock/errflag
indexv(1)= 4
indexv(2) = 2
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indexv(3) = 3
indexv(4) = I
indoxv(5) = 5

c First, we calculate the background number density from the pressure
c 3.1219E16 is N for 1 Torr, 300K

nbg = 3.2191E16*p
c Next, we adjust the diffusion coefficients for the density-,
c they are entered normalized to 1 T. We assume kTe=l.Oev.

do 10 i = 1,ns
10 dc(i)=dc(i)/p
c S's also have to be adjusted for nbg.
c ****** In this case, we will look at N-dependent source terms only*****
c Therefore, ss(i) really represents various collision freqencies.
c We have [ss(1)*ne*nbg] = l/(cm*cm*cm*s), which implies
c [ss(1)*nbg] = V(s). We adjust for the various dependencies to get
c* In dissoc, we have a term "v(1)", where here we have (2.0*Te+vi(1))".
That is the normalization difference.
C**

ss(l)= ss(1)*nbg*exp(vi(1))/(2.0+vi(1))*0.02585
c ss(2) would work exactly the same way for the second species.
c* The same change occurs for ss(2).
C**

ss(2)= ss(2)*nbg*exp(vi(2))/(2.0+vi(2))*0.02585
c ss(3) is the "charge transfer" frequency that describes the production
c of the second ion species from the first. We have
c [ss(3)*nbg*nbg*nll = 1/(cm*cm*cm*s) again, which is not equivalent to
c to ss(1) and ss(2). In fact, we get ss prop to (nbg/kTi)**2 to get

ss(3)= ss(3)*6.9246E29
c 6.9246E29 is nbO*nbO*ktO*ktO; we divide by (kTi*kTi) in difeq
c Note that we have to carefully define what we mean by this; the value of
c ss(3) will depend heavily on the partial pressures of the various gases.
c Finally, we have ss(4), which describes the dissociative attachment loss
c term for species 2. We have [ss(4)*n2*ne]=fI(cm*cm*cm*s), which
c depends
c on none of the temperatures or pressures. Therefore, we need only adjust
c for the dependence of ss(4) itself, which depends on kTe**(-1.5). Since
c we input values for kTe=1.0, no adjustment it required. We put in a
c commented line anyway, just to help keep track.
c
c ss(4) = ss(4)
c Last thing we do is generate xs(3), the source term for electrons

xs(3) = xs(1)+xs(2)
do5if 1,3

5 xs(i) = xs(iYne0
c This corrects for the normalized electron density we're using.
c
c *********THIS PART GENERATES VARIOUS FIXED
PARAMETERS*******************
c First, we generate h and h/2.

h = I/(numseg-1)
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h5 = h/2.0

c Next, we generate x(i). It is not vital to the relaxation process; we
c are using constant grid size. However, this way we only calculate it once.
c Note also that this version does not use any analytic current densities.
c Therefore, we do not calculate ge(i).

x(numseg) = 1
do 20 i=numseg-1,2,-1
x(i) = x(i+l)-h

20 continue
x(1) = O.ODO
return
end

NEWPARAMS.F. Newparams replaces some of the operations of the

former defprms.f. We use only a single version for either version of freq.f.

subroutine newparams(y,scalv,fl,numseg)
implicit undefined (a-z,A-Z)
integer ndy,ndxerrflag,flag
parameter(ndy--5,ndx=201)
integer numseg,i

c* fl and f2 are the fractions of species 1 and 2.
Cv*

real*8 scalv(*),fl,f2,sl,s2,slkte,s2kte,bessj0,bessj 1
c* dij is the diffusion coefficient for species i in background gas j.
C**

real*8 y(ndy,ndx),kTeup,zbrent,finc,d 11,d12,d21,d22
real*8 kte,lmbdj0,conv,nbg
real*8 ss(ndy),dc(ndy),neO,l,h5,x(ndx),kl
common/fnparms/ss,dc,conv,neO,l,h5,x,nbg
common/errblock/ errflag
parameter (ImbdO = 2.4048255576958)

c* This code ensures that the variables are retained from one call to the
next
C**

save d 11,d 12,d21,d22,s l,s2,flag
c* For the first call, flag is 0.
C**

data flag /0/
external fumc

c* We want to save the original values of dc(i) and ss(i), so we can
recalculate dc(1), dc(2), ss(1), and ss(2) for later calls. So, the first time, we
save them, and then set flag to 1 so we know we've done so.
C**

if (flag.eq.O)then
flag=l
dll = dc(1)
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c* We actually don't need to save dc(3) and dc(4), since we never change
them. However, doing so makes the code clearer.
C..

d12 = dc(3)
d22 = dc(2)
d2l = dc(4)
81 s8(1)
s2 W a2)

endif
c* Recall that fl is different for each call to newparams.
c**

M = 1.0-fI
c* This is Blanc's law.
C*.

dcW2)=d21*d22t(E2*d21+f1*d22)
ss( 1)=naz( 1.0D-40,s1*fl)
ss(2)=max( 1.0D-4O,s2*t'2)

c* The write statement is debugging code. As noted before, it's much
easier to uncomment than to rewrite.
C..

kTeup = 40.ODO
80 errflag=O0

kTe = zbrent(fixnc,1.OD-5,kTeup,1.D-9)
if~errflag.eq. 1)then

wrt( *'~ in defprms = ',kTe,' enter new kteup'
read(*,*)kteup
if~kteup.ne.O.0D0)then

goto 80
else

stop
endif

endif
k1 = slkTe(kTe,1.O)*dc(2y/(slkTe(kTe,1.0)*dc(2)

$ +s2kTe(kTe, 1.N0)d1))
do 30 i=1,numseg
Y(1,0) = kl*bessj0(x(i)/l*lmbdj0)
y(24i) = bessj0(x(i)/1*lmbdj0)
YOMi = s 1kTe(kTe,x(il)*1)IAmbdij0*bessj 1(x(i)/l*lmbdj0)
y(4,i) = s2kTe(kTe,x(i)/l)*I/lmbdjO*bessj 1(x(i)/l*lmbdU0)
y(5i) = kTe

30 continue
scalv(1) = Y(1,1)
scal'v(2) = y(2 ,1)
scalv(3) = Y(3,numseg)
scalv(4) = Y(4,numseg)
scalv(5) = Y(5,1)
return
end
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OUTHEADER.F. This prints our header information.

subroutine outheader(outfilel~outfile2,conv)
implcitundefined (a-zA-Z)

characr outfilel*20,outfile2*2O
real*8 cony
open(7,STATUS='UNKNOWNXFIELE=outfilele)
open(8,STATUS='UNKNOWN',FILE=outfile2)
open(9,STATTJS='UNKNOWN',FILE='nextit.for')
write(7,2000)conv

2000 format('Tolerance on relaxation is ',lpglO.3)
end

OUTPARMS.F. Thi prints our the parameters.

subroutine outparms (numseg,p)
implicit undefined (a-z,A-Z)
integer ndy,ndx,ns
parameter(ndy--5,ndx=20 1,ns=3)
integer numseg,i
real*8 p~nbg
commonlfnparms/ssi,dc,conv,neO,l,h5,x,nbg
real*8 ss(ndy),dc(ndy),neO,l,h5,x(ndx),conv
wrjte(7,*fl, conv, p, ne0'
write(7 ,1000)1,conv,p,neO
write(7,*)

1000 format(8(lpglO.3,:,','))
return
end

OUTPUT.F. This prints out the data we need for the comparisons.

subroutine output(frac,y)
implicit undefined (a-h,o-zA-H,O-Z)
integer ndy,ndx
parameter(ndy=5,ndx=20 1)
real*8 y(ndy,ndx),frac
writ(7,*)?)ercentage of species 2; kTe(degrees K)'

c numerical constant is conversion from eýT to Te; =e/k
C* outfilel gets percentages; outfile2, the *otual fraction.

w r t(C0 0*0 O 0 (.*r c ,y 5 1 * 1 0 .
write(8,10OX1.00-*10frac),y(5,1)*1 604.9
return

2000 format (RU.,x4.0)
1000 format(f`7.3,x,8( lpglO.3,x))

end
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TIFUNC.F. This is the same as in dimeo. Therefore, we do not list it

here.

VON.F. This program duplicates Von Engel's calculations of electron

temperature versus gas, pressure, and radius ("cpR*).

program von
real*8 cpR, Vi, Te, vonfunc
common Vi,cpR
external vonfunc
write(*,*Yinput cpR, Vit
read(*,*)cpR,Vi
Te = zbrent(vonfunc, .D-2, 200.ODO, 1.OD-6)
write(*,*)'k~e in eV; kTeIVi in K =',Te, Te/Vi*11694.8
end

function vonfunc(Te)
real*8 Te,Vi,cpR,vonfunc,xx
common Vi,cpR

c* Debugging code.

c write(*,*)Yin vonfunc;Vi,Te ',Vi,Te
x=Vi/Te
zx=exp(x)/sqrt(x)-( 1.2D7)*cpR*cpR

c write(*,*)'out vonfunc'
vonfunczzi
return
end

SUBROUTINE ERROUT
COMMON/ERRBLOCK/ERRFLAG
INTEGER EREFLAG
ERRFLAG= 1
RE-TURN
END

YNG.F. This program duplicates Young's calculations, using DAB's

expression.

program yng
implicit undefined (a-h,o-zA-H,O-Z)
real*8 pD,fI,f2,Te,zbrent,yngfunc
common fl,f2,pD
external yngflmc
write(*,*)'Input pD'
read(*,*)pD
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do 10 i=1,7
E2= 0-1)/6.0

f1=1.O-42
Te=zbrent(yngfunc, 1.D-1, 10.0, 1.D-6)

c write(*,1000)'fl, To ',fI,Tel.-6D-19t1.38D-23
write(¶,1000)'fl, To ',fITe*11604.8

10 continue
1000 fbrmat((a:),f7.4,x,fIO.O)

end

function yngfwic(Te)
implicit undefined (a-h,o-zA-H,O-Z)
realB8 bl~b2,ul 1,ul2,u22,u2l,al,a2,vl,v2,cl,c2,f142
real*8 x1,x2,ans,Te,pD,yngfunc
common fl,12,pD
parameter(ull=10.5,u12= 16.0, u21=12.5,u22=4.0,a1=4.6D-2)
parameter(a2=5.6D-2,vl=24.5,v2=2 1.5)
b1=760.0/(f1/ull+f21u12)
b2=760.00/4f~214f21422)
cl=al*sqrt(vl)/bl
c2=-a2*sqrt(v2Y/b2
xl=vl/Te
x2=v2fTe
ans=fl*cl*pD*pD/sqrt(xl)*( 1.0+0.5*xl)*exp(-xl)
ans=ans+f2*c2*pD*pD/sqrt(x2)*( 1.0+0.5*x2)*exp(-x2)
yngfunc--an-1.72D-7

c if~fl.lt.1.0)then
c write(*,*)ybl,b2,cl,c2',bl,b2,cl,c2
c wrjte(*,*)'fl,ans j,fans
c stop
c endif

return
end

SUBROUTINE ERROUT
COMMON/ERRBLOCK/ERRFLAG
]ONTEGR ERRFLAG
ERRFLAG=1
RETURN
END

MAKEFILE. The makefile has some significant differences from the

previous ones, so we list it.

recipepath = $[HOME)/recipes/
hone: heneobs

ftn -o hone hone-o newparams.o difeq.o getparms.o\
defprms.o outheader.o outparms.o output.o\
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$(recipapath)solvde.o $(recipepath)red~o $(recipepath)pinvs.o\
$(recipepath)bkoub-o $(recipepath)zbrent.o tifunc.o\
$(recapopath)bessjO.o $(recipepath)bessj 1.0 freq.o

heneobs: hene.o newparams.o getparms.o defprms.o outheader.o\
outparms-o output~o difeq.o $(recipepath)solvde.o \
$(recapepath)red.o $(recipepath)pinvs.o $(recipepathlbkoub.o\
$(recipepath)zbrent-o tifunc.o $(recipepath)bessjl.o\
$(recipepath)bessjO.o freq.o

hene.o: hene.f
ftn -c -f(-02 hene.f

newparams.o: newparams.f
ftn -c -f -02 newparams.f

difeq.o: difeq~f
ftn -c -f(-02 difeq.f

freq.o: freqif
ftn -c -F -02 fr-eq.f

tifunc.o: tifunc.f
ftn -c -f -02 tifimc.f

$(recipepath)solvde.o: $(recipepath)solvde.f
ftn -c -f(-02 $(recipepath)solvde.f

$(recipepath)pinvs.o: $ (recipepath)pinvs.f
ftn -c -f -02 $frecipepath)pinvs.f

$(recipepath)red.o: $(recipepath)red.f
ftn -c -f(-02 $(recipepath)red.f

$irecipepath)bksub.o: $(recipepath)bksub.f
ftn -c -f(-02 $(recipepath)bksub.f

$(recipepath)zbrent.o: $ (recipepath)zbrent.f
ftn -c -f(-02 $(recipepath)zbrent.f

getpai-ms.o: getparms.f
ftn -c -f(-02 getparms.f

defprms.o: defprms.f
fbi -c -f -02 defprms.f

outheader.o: outheader.f
ftn -c -( -02 outheader.f

output.o: output.f
ftn -c -f(-02 outpuL.AL

outparms.o: outparms.f
ftn -c -f(-02 outparms.f

$(recipepath)besaj0.o: $(recipepath)bessjO.f
ftn -c -( -02 $(recipepathlbesajO.f

$(recipepat~h)bessjl.o: $(recipepath)bessj 1.f
ftn -c -( -02 $(recipepath)bessjl.f

testfre: testfre.o newparams.o getparms.o defprms.o outheader.o\
outparms.o output.o \
$(recipepath)zbrent.o tifunc.o $(recipepath)bessj 1.o\
$(recipepath)besoj0.o fr-eq.o
fbi -o testfre testfre.o newparaim.o getparms.o\
defprms.o outheader.o outparms.o output.o\
$(recipepath)zbrent.o tifunc.o \
$frecipepath)bessjO.o $(recipepath)bessjl.o fr-eq.o
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testfre.o: testfre.f
fin -c -f(-02 tostfro.(

von: von.o $(recipepath)zbrent-o
fin -o von von~o $(recipopath)zbrent~o

von.o: vOn.f
ftn -c -f -02 vond

yng- yng.o $(recipepath)zbrent~o
fin -o yng yng-o $(rocipepath)zbrent-o

yng.o: yng.f
ftn -c -f(-02 yng.f

henoc. fr-eqcomplex.o defprmen.o heneobs
cp fr-eqwomplex.o fr-eq.o
cp defprman o dofprms-o
make hen.
my hone henec

hones: freqsimple.o defprmso-o heneobs
cp frequimple.o freq.o
cp defprmso.o defprms-o
make hone
my hone hones

freqsimple.o:freqsimple-f
ftn -c -f -02 freqsimple.f

freqcomplox.o:freqcomplox.(
ftn -c -( -02 fireqcomplex-f

defprmso.o:defprmso-f
ftn -c -( -02 defprmso-f

defprmsn.o:defprmsn.f
ftn -c -( -02 dofprmsn-f

testfrec:fr-eqcomplox.o dofprmsn.o testfre
cp froqcomplex.o freq.o
cp dofprmsn.o dofprms-o
make tostfre
my tostfre testfr-ec

teatfres:fr-eqsimnplo-o dofprmso-o testfre
cp freqsimple.o freq.o
cp dofprmso.o dofprms.o
make testfre
my testfiro testfres

The primary difforencos are at the end, whore we establish targets (or

hones and honoc. These are formed by copying the appropriate versions, of

freq.( and defprms.f, makoing hone, and then copying hone to henec or

hones. We also add targets for von and yng.

WUNDERER
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The last program is the one used to duplicate Wwiderer's results

(Wunderer, 1978). The program has similarities in broad form to ext, but

has considerable differences in detail, due to the desire to match

Wunderer's system as closely as possible.

EXT.F. The main program was still called ext. The most significant

changes were to remove the descriptions of the common blocks and

variables into include files, and the recasting of variable names to match

Wunderer.

program ext
include 'comparm.f'
include 'common.f
integer itmax,errflag
real*8 y(ndy~ndx),s(nsi,nsj)
real*8 c(nci,nc~j,nck),slowc,scalv(ne)
real*8 conv,rhob
common /extsrce/ rhob
common /errblock/errflag
integer indexv(ndy),numout,numseg,i,totit,anflag
character*20 outfilel ,outfile2
call getpsrms (numseg,itmaxr,outfille ,outfile2,anflag,
$numout,slowc,conv,rhob)
call defprms(numseg,indexv,scalv,y)
if (anflag.ne.O)then

call outheader(outfilel ,outfile2,conv)
call output(numseg,y,numout)

endif
totit=O

20 errflag=O0
call solvde(itmax,conv,slowc,scalv,indexv,ne,nb,numseg

*,y,ndy,ndx,c~nci,ncj,nck,s,nsimnsj)

if (errflag.ne.O)then
totit--totit+itmax

writ(*, *)'~ota iterations so far = ',totit
write(*,)'How many more to try?'
read(*,*)itmax
if (itmax.gt.O)goto2O

endif
call outheader(outfile 1,outfile2,conv)
call output(numseg,y~numout)

3D continue
endfile(7)
endfile(8)
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endhile(9)
close(7)
close(S)
close(9)
end

SUBROUTINE ERROUT
COMMON/ERRBLOCK/ERRFLAG
INTEER EREFLAG
ERRFLAG-1
RETURN
EN~D

COMMONS.F and COMPARM.F. These two files contain the

definitions of the most widely used common blocks.

implicit none
integer ndx, ndy
parameter (ndx= 201, ndy=8)
real*8 ss,t,,gdu,l,h5,x
commonlfnparms/ss,t,g~d,u,l ,h5 ,x(ndx)

integer m,,ne,nb,nsi,nsj,nci,ncj ,nck
parameter(m=20 1,ne=4,nb=2,nsi=ne,nsj=2*ne+ 1

$ ,nci=ne~ncj=ne-nb+l1,nck=m+ 1)

GETPARMS.F. This routine gets the input parameters.

subroutine getparms(nulmseg,itmax outfilele,outfile2,anflag,
$numout~slowc,conv,rhob)
include 'comparmSf
include 'common.f
integer itmax,anflag
real*8 conv,rhob,slowc
integer numseg,numout
character*20 outfilel~outfile2
open(7,FILE='infile' ,STATUS='OLD')
rewind(7)
read(7,*)numseg
read(7 ,)numout
read(7,*)itmaxr
read(7,*)conv
read(7,*)slowc
read(7,*)l

c* The next 6 lines read in variables we did not use before except ss, and
that is used in a different meaning. These correspond to normalized
variables defined by Wunderer.

read(7,*)rhob
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read(7,*)t

read(7,*)g
read(7,*)d
read(7,*)u
read(7,*)anflag
read(7,*)outfilel
read(7,*)outfile2
close(7)
return
end

DEFPRMS.F. This initializes the variables.

subroutine defprms(numseg,indexv,scalv,y)
include 'comparm.f
include 'common.f
integer numseg,ij
integer indexv(ndy)
real*8 scalv(*),h,y(ndy,ndx),xfunc
indexv(l) = 3
indexv(2) = 4
indexv(3) = 1
indexv(4) = 2

c We have eliminated a LOT of stuff from the other implementations
c of the code. This is because Wunderer deals with a single case,
c not a range of paramaters. So, we change nothing.
c Now we check to see if we want analytic initial solutions, or to read
c in from the last time we ran the program. numseg = 1 => read'em in.

if (num eg.ne.1) then

c *********THIS PART GENERATES THE INITIAL SOLUTIONS
ANALYTICALLY*********
c First, we generate h and h/2.

h = 1.0/(numseg-1)
h5 = h/2.0
x(numseg) = 1.0
do 40 i = numseg-1, 2, -1
x(i) = x(i+l)-h

40 continue
x(1) = O.ODO

c Next, we initialize the dependent variables with a pseudo-solution
c* The pseudo-solution is not even a solution recombination or charge
transfer ignored, since no analytic solution exists, even in that case.
C**

do 50, i=1,numseg
y(1i) = uxfmc(x(i))*(1.0+u)/(l*l*4.0)*(1.0-x(i)*x(i))
y(2,) - y(10)'2.0
y(3i) = xfunc(x(i))*x(i)*1*0.5
y(4,i) = xfunc(x(i))*x(i)*l*0.5
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50 continue
c Now we exit the analytic solutions loop

else

c ******THIS PART IS FOR READING IN THE SOLUTIONS

open(9, STATUS='UNKNOWN',FILE='nextit-for')
read(9,*)numseg
do 60 i=1,numseg
read(9,*)x(i),(yQj,),j= 1,ne)

60 continue
h5 = (z(2)-x(1))*0.5
close(9)
endif

c ****NOW WE'RE BACK TO THE OVERALL INITIALIZATION

c Finally, we initialize scaly
scalv(1) = Y(1,1)
scalv(2)= Y(2,1)
scalv(3) = Y(3,numseg)
scalv(4) = y(4,nurnseg)
do 70 i=1,4

70 if (scalv(i).eq.0.0) w ite(*,)'scalv =0; i= ',i
return

9999 format (1g1O.4)
end

DIFEQ. F. This is changed to reflect the different physics of

Wunderer's system.

subroutine difeq(k,klk.2 jsf~is1,isf~indexv,ne,s,nsi,nsj
1 ,y,nyj,nyk)
include 'common.f
integer k,kl,k2jsf~isl,isf~indexv(*),ne,nsi,nsj,nyj~nyk
integer ij
real*8 s(nsi,nsj ),y(ndy,ndx),nl1,n3 ,gl ,g2,divisor,n2,dl ,d2
real*8 xfunc,rho

c Y(1,k) is ion one. Y(2,k) is electrons. Y(3,k) is ion current 1.
c Y(4,k) is ion current 2.

if (k~eq.kl)then
s(3,4+indexv( 1))=0O.O
s(3,4+indexv(2))=0O.0
s(3,4+indexv(3))=1.0
s(3,4+uidexv(4))=-O.0
s(3jsf) = y(3,1)
s(4,4+indexv( 1))=0.O
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s(4,4+indezv(2))u0.0
s(4,4+uidxv(3))u0.0
s(4,4+indexv(4))=n1.0
s(4jsf) = y(4 ,1)

else if (k~gtk2)then
s(i,4+indexv(1))=1.0
s( 1,4+ftdexv(2))zO.0
s( i,4+indexv(3))u'0.0
s( 1,4+indexv(4))=0O.O
s(ijaO =y(1,k2)
s(2,4+indexv( 1))=-O.0
s(2,4+indexv(2))=1.0
s(2,4+indexv(3))0O.0
s(2,4+indezv(4))inO.0
s(2jsf) = y(2,k2)

else
c* rho is the dimensionless distance.

rho = (x(k)+x(k-1))*0.5
nl=(y( 1,k)+y( 1,k- 1))*0.5
n3=(y(2,k)+y(2Zk- 1))*0.5
n2=n3-nl

g2=(y(4,k)+y(4,k- 1))*0.5
s( 1jsf)-y(l1k)-y(l1,k- 1)-2.0*h5*1*1*(nh/n3*u

$*(gl+g2)..gl*(l+u))

s( 1indexv(l))=--.0h5*1*l*n1l*u*( 1-i-u))n

s( 1indexv(3))=-h5*1*1*(nhl/3*u-(~)
s( 1,indexv( 1)+4)=s(l1,ndexv( 1))+2.0
s( 1,indexv(2)+4)=s( 1,mndexv(2))
s( 1,ndexv(3)+4)=s(1,indexv(3))
s( 1,indexv(4)+4)=s( 1,indexv(4))
s(2jsf0=y(2,k)-y(2,k- 1)+2.0*h5*1*l*(gl+g2)
s(2,indexv( 1))=0O.0
s(2ýindexv(2))-1.0
s(Undexv(3))=h5*1*l
s(2,idexv(4))=h5*1l*
s(2indexv( 1)+4)=0O.O
s(2,indexv(2)+4)=+1.0
s(2,indexv(3)+4)=h5*l*l
s(2,indexv(4)+4)=h5*l*1
s(3jsO)-y(3,k)-y(3,k- 1)-2.0*h5*(xfinc(rho)

s(3,indexv( 1))=h5/(1*l)*(t*ss*n3+g)
s(3,indexv(2))=h5htt~s*nlh(I*l)
s(3,indexv(3))=- 1.o+h5trho
s(3,indexv(4))=O.0
s(34ndexv( 1)+4)=s(3idexv(1))
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s(3,index~v(2)+4)=s(3,indexv(2))
g3,indexv(3)+4)=1.O+h5/rho
s(3,indexv(4)+4)-O.O
s(4jsO=y(4,k)-y(4,k-l)-2.O*h5/(l*l)*

$(g*d*nl..ss*n3*(n3.nl).g2*l*Ilrho)
s(4,indexv( 1))=-h5/(llI)*(g*d+ss*n3)
M(4,indexv2))=h5/(ll)*2.0*ss~n3

s(4A~ndexv(3))=O.0
s(4,index~v(4))=- 1.0+h6/rho
s(4,indexv( 1)+4)=s(4,index~v( 1))
s(4,indexv(2)+4)=s(4,indezv(2))
s(4,index~v(3)+4)=O.0
s(4,indexv(4)+4)= 1.0+h5/rho

endif
return
end

OUTHEADER.F. This opens the files and prints out header

information.

subroutine outheader(outfile 1,outfile2,conv)
character outfile 1*20,outfile2*20
rea*8 conv
open(7,STATUS='UTNKNOWN 1,FILE=outfilel)
open(8,STATUS=IJNKNOWN 1 ,FJLLE=outffle2)
open(9,STATUS='UNKNOWN',FILE='nextit.for')

c rewind(9)
write(7,2000)conv
write(7,2001)

2000 formatCVolerance, on relaxation is ',lpglO.3)
2001 format('x',l0x,'nl', l0x,'n2', l0x,'ne',10x,'gl',10x,'g2',l0x,'ge')

end

OUTPUT.F. This prints out the results.

subroutine output(numseg,y,numout)
include 'comparm.f'
include 'common.f
integer numout,numseg,i,counteri
real*8 y(ndy,ndx),13,14,neO,s4,xfinc,nl,n2,nO
external ti~xfunc:
write(9,*)numseg
n1 = Y(,1)
n2 = Y(2,l)-nl
nO = Y(2,I)
counter = max((numsieg-1)/numout,1I)
do 10 i=1,numseg,counter
write(7,1000)x(i),y(1,i),(y(2,i)-y(l1,)),y(2,i),

1 y(3A)y(4,i),(y(3,i)+y(4,i))
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1 y(3,i),y(4,i),(y(3,i)+y(4,i))
10 continue

do 20 i=1,numaeg
2D write(9,3000)x(i),(y(j4i)j=1,ne)

return
3000 format(f6.4,x,5(1pg2O.9,x))
1000 format(fr5.2,x,8( lpglO.3,x))

end

TIFUNC.F. Although the name is the same as the files that contain

the temperature variation for the other versions, this file contains only the

function that determines the functional form of the external source. The

name we not changed because changing it would have required numerous

changes to the makeffle. The functional form is exactly Wunderer's.

function xfunc(rho)
real*8 rho,rhob,xfu~nc
common /extsrce/rhob
xfunc--exp(-(rho/rhob)**2.2)
return
end

MAKEFILE. This is the makefile for the program.

recipepath = $(HOME)/recipes/
ext: ext~o getparms.o defprms.o outheaderno\

output.o difeq.o $(recipepathlsolvde.o \
$(recipepath)red.o $(recipepath)pinvs.o $(recipepath)bksub.o\
$(recipepath)zbrent.o tifunc.o common.f
ftn -0 -f -o ext ext~o difeq.o getparms.o\
defprms.o outheaderno output.o \
$(recipepath)solvde.o $(recipepath)red~o $(recipepathlpinvs.o\
$(recipepath)bksub.o $(recipepath)zbrent.o tifunc.o

ext.o: ext~f common.f
ftn -0-f -c extJ'

difeq.o: difeq.f common.f
ftn -0 -f -c difeq.f

tifunc.o: tifunc.f common.f
ftn -0 -f -c tifunc~f

$frecipepath)solvde.o: $(recipepath) solvde.f
ftn -0 -f -c $(recipepath)solvde.f

$(recipepeth)pinvs.o: $(recipepath)pmnvs.f
ftn -O -f -c $(recipepath)pinvs.f

${recipepath)red.o: $(recipepath)red.f
ftn -O -f -c $(recipepathjred.f
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$(recipepath)bksub.o: $(recipepat~h)bksub.f
fta -O -f -c $(recipepath)bkoub.f

$(recipepath)zbrent.o: $frecipepath)zbrent.f
ftn -0 -f -c $(recipepath)zbrent.f

getparms.o: getparms.f common.f
fbi -0 -f -c getparme.f

defprms.o: defprms.f common.f
fbi -0 -f -c defprms.f

output-o: output.f common.f
fbi -0 -f -c outpuLf

outheader~o: outheader.f common.f
fbi -0 -f -c outheaderlf
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